On the essential spectrum of a differentially rotating star in the axisymmetric case

被引:3
作者
Faierman, M [1 ]
Möller, M [1 ]
机构
[1] Univ Witwatersrand, Dept Math, ZA-2050 Johannesburg, South Africa
关键词
D O I
10.1017/S0308210500000019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A mixed-order system of singular partial differential equations occurring in the study of rotating stars is considered. It is shown that the associated operator L-0 is closable and that the essential spectrum of its closure L coincides with the essential spectrum of a bounded operator. Finally: some parts of the essential spectrum of L are determined explicitly.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 15 条
  • [1] Adams R. A., 1975, SOBOLEV SPACES
  • [2] THE ESSENTIAL SPECTRUM OF SOME MATRIX OPERATORS
    ATKINSON, FV
    LANGER, H
    MENNICKEN, R
    SHKALIKOV, AA
    [J]. MATHEMATISCHE NACHRICHTEN, 1994, 167 : 5 - 20
  • [3] Dunford N., 1958, Linear Operators Part I
  • [4] ON STABILITY FOR SYMMETRIC HYPERBOLIC SYSTEMS .1.
    ECKHOFF, KS
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1981, 40 (01) : 94 - 115
  • [5] Faierman M, 1999, Z ANGEW MATH MECH, V79, P739, DOI 10.1002/(SICI)1521-4001(199911)79:11<739::AID-ZAMM739>3.0.CO
  • [6] 2-V
  • [7] Kato T., 1980, PERTURBATION THEORY
  • [8] The essential spectrum of a non-elliptic boundary value problem
    Langer, H
    Moller, M
    [J]. MATHEMATISCHE NACHRICHTEN, 1996, 178 : 233 - 248
  • [9] SHORT WAVELENGTH INSTABILITIES OF ROTATING, COMPRESSIBLE FLUID MASSES
    LEBOVITZ, N
    LIFSCHITZ, A
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1992, 438 (1903): : 265 - 290
  • [10] INSTABILITIES OF IDEAL FLUIDS AND RELATED TOPICS
    LIFSCHITZ, A
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1995, 75 (06): : 411 - 422