Nitrate removal from aqueous solution by adsorption onto various materials

被引:304
作者
Öztürk, N [1 ]
Bektas, TE [1 ]
机构
[1] Osmangazi Univ, Muhendislik Mimarlik Fak, Kimya Muhendisligi Bolumu, TR-26480 Eskisehir, Turkey
关键词
nitrate removal; adsorption; sepiolite; activated sepiolite; wastewater;
D O I
10.1016/j.jhazmat.2004.05.001
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this study sepiolite. sepiolite activated by HCl, slag and powdered activated carbon were used as adsorbent with a particle size was between 71 and 80 mum (200-170 mesh). NaNO3 solution (100 mg/l) was used in batch adsorption experiments for nitrate removal. First kinetic studies were carried out and it was determined that slag was not effective for nitrate removal, then contact time, pH and adsorbent dosage effects on nitrate removal by adsorption were investigated using other adsorbents except slag. The equilibrium time was found to be 30, 45, 5 min for sepiolite, powdered activated carbon and activated sepiolite, respectively. The most effective pH value for nitrate removal was 2 for powdered activated carbon. pH value did not affect nitrate removal significantly for other adsorbents. Adsorbent dosages were varied from 5 to 20 g/l solutions. An increase in adsorbent dosage increased the percent removal of nitrate. A series of isotherm studies were undertaken and the data evaluated for compliance with the Langmuir and Freundlich isotherm models. To investigate the adsorption mechanisms, three simplified kinetic models, i.e., first-, second-order and intraparticle diffusion were tested. Adsorption followed second-order rate kinetics. The correlation coefficients for second order kinetic model are greater than 0.996. Experimental data show that sepiolite activated by HCl was effective for nitrate removal. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:155 / 162
页数:8
相关论文
共 39 条
  • [1] Akkurt F., 2002, J FAC ENG ARCHIT GAZ, V17, P83
  • [2] ALDURI B, 1996, ADSORPTION MODELING, P133
  • [3] Altundogan HS, 2000, WASTE MANAGE, V20, P761
  • [4] Arsenic adsorption from aqueous solutions by activated red mud
    Altundogan, HS
    Altundogan, S
    Tümen, F
    Bildik, M
    [J]. WASTE MANAGEMENT, 2002, 22 (03) : 357 - 363
  • [5] Use of cellulose-based wastes for adsorption of dyes from aqueous solutions
    Annadurai, G
    Juang, RS
    Lee, DJ
    [J]. JOURNAL OF HAZARDOUS MATERIALS, 2002, 92 (03) : 263 - 274
  • [6] *APHA AWWA WPCF, 1967, STAND METH EX WAT WA
  • [7] Arden T. V., 1994, NEW WORLD WATER, P59
  • [8] Improved brine recycling during nitrate removal using ion exchange
    Bae, BU
    Jung, YH
    Han, WW
    Shin, HS
    [J]. WATER RESEARCH, 2002, 36 (13) : 3330 - 3340
  • [9] Nature of ammonium ion adsorption by sepiolite: analysis of equilibrium data with several isotherms
    Balci, S
    [J]. WATER RESEARCH, 2004, 38 (05) : 1129 - 1138
  • [10] Ammonium ion adsorption with sepiolite:: use of transient uptake method
    Balci, S
    Dinçel, Y
    [J]. CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2002, 41 (01) : 79 - 85