Performance Study of Some Recent Optimization Techniques for Energy Minimization in Surveillance Video Synopsis Framework

被引:2
作者
Ghatak, Subhankar [1 ]
Rup, Suvendu [1 ]
机构
[1] Int Inst Informat Technol, Dept Comp Sci & Engn, Image & Video Proc Lab, Bhubaneswar 751003, India
来源
INFORMATION, PHOTONICS AND COMMUNICATION | 2020年 / 79卷
关键词
Optimization; Energy minimization; Video synopsis; Video surveillance;
D O I
10.1007/978-981-32-9453-0_23
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the age of the smart city, each activity is under surveillance. The employment of plentiful surveillance video cameras produces the gigantic amount of redundant video data. For ease of investigations, video synopsis competently shrinks the length with the preservation of all activities presents in the original video. The outcome of the video synopsis technology greatly depends on the central module, the optimization framework, and its minimization. This paper evaluates the performance of various optimization techniques, namely simulated annealing (SA), NSGA II, cultural algorithm (CA), teaching-learning-based optimization (TLBO), graywolf optimizer (GWO), forest optimization algorithm (FOA), JAYA algorithm, elitist-JAYA algorithm, self-adaptive multi-population-based JAYA algorithm (SAMP-JAYA), to minimize the energy in the field of object-based surveillance video synopsis. The experimental results and analysis direct the need for an optimization algorithmwhich can efficiently and consistently solve the minimization problem in connection to video synopsis.
引用
收藏
页码:227 / 237
页数:11
相关论文
共 18 条
[1]  
[Anonymous], 2006, P. L.
[2]  
[Anonymous], 2016, Int J Ind Eng Comput, DOI DOI 10.5267/J.IJIEC.2015.8.004
[3]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[4]  
Fuentes L., 2001, PETS2001
[5]   Forest Optimization Algorithm [J].
Ghaemi, Manizheh ;
Feizi-Derakhshi, Mohammad-Reza .
EXPERT SYSTEMS WITH APPLICATIONS, 2014, 41 (15) :6676-6687
[6]   OPTIMIZATION BY SIMULATED ANNEALING [J].
KIRKPATRICK, S ;
GELATT, CD ;
VECCHI, MP .
SCIENCE, 1983, 220 (4598) :671-680
[7]  
Li K, 2016, IEEE SIGNAL PROC LET, V23, P11, DOI [10.1109/LSP.2015.2496558, 10.1109/lsp.2015.2496558]
[8]   Surveillance Video Synopsis via Scaling Down Objects [J].
Li, Xuelong ;
Wang, Zhigang ;
Lu, Xiaoqiang .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (02) :740-755
[9]   Grey Wolf Optimizer [J].
Mirjalili, Seyedali ;
Mirjalili, Seyed Mohammad ;
Lewis, Andrew .
ADVANCES IN ENGINEERING SOFTWARE, 2014, 69 :46-61
[10]   Compact Video Synopsis via Global Spatiotemporal Optimization [J].
Nie, Yongwei ;
Xiao, Chunxia ;
Sun, Hanqiu ;
Li, Ping .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2013, 19 (10) :1664-1676