Uncertain random variables are used to describe the phenomenon of simultaneous appearance of both uncertainty and randomness in a complex system. For modeling multi-objective decision-making problems with uncertain random parameters, a class of uncertain random optimization is suggested for decision systems in this paper, called the uncertain random multi-objective programming. For solving the uncertain random programming, some notions of the Pareto solutions and the compromise solutions as well as two compromise models are defined. Subsequently, some properties of these models are investigated, and then two equivalent deterministic mathematical programming models under some particular conditions are presented. Some numerical examples are also given for illustration.