A General Asymptotic Scheme for the Analysis of Partition Statistics

被引:10
作者
Grabner, Peter J. [1 ]
Knopfmacher, Arnold [2 ]
Wagner, Stephan [3 ]
机构
[1] Graz Univ Technol, Inst Anal & Computat Number Theory, A-8010 Graz, Austria
[2] Univ Witwatersrand, Sch Math, John Knopfmacher Ctr Applicable Anal & Theory, ZA-2050 Johannesburg, South Africa
[3] Univ Stellenbosch, Dept Math Sci, ZA-7602 Stellenbosch, South Africa
基金
新加坡国家研究基金会;
关键词
INTEGER; NUMBER; PARTS;
D O I
10.1017/S0963548314000418
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider statistical properties of random integer partitions. In order to compute means, variances and higher moments of various partition statistics, one often has to study generating functions of the form P(x) F(x), where P(x) is the generating function for the number of partitions. In this paper, we show how asymptotic expansions can be obtained in a quasi-automatic way from expansions of F(x) around x = 1, which parallels the classical singularity analysis of Flajolet and Odlyzko in many ways. Numerous examples from the literature, as well as some new statistics, are treated via this methodology. In addition, we show how to compute further terms in the asymptotic expansions of previously studied partition statistics.
引用
收藏
页码:1057 / 1086
页数:30
相关论文
共 27 条
[1]  
Andrews G.E., 1998, THEORY PARTITIONS
[2]  
[Anonymous], 1990, GRADUATE TEXTS MATH
[3]   The distribution of ascents of size d or more in partitions of n [J].
Brennan, Charlotte ;
Knopfmacher, Arnold ;
Wagner, Stephan .
COMBINATORICS PROBABILITY & COMPUTING, 2008, 17 (04) :495-509
[4]  
Corteel S, 1999, RANDOM STRUCT ALGOR, V14, P185, DOI 10.1002/(SICI)1098-2418(199903)14:2<185::AID-RSA4>3.0.CO
[5]  
2-F
[6]  
Erdos P., 1941, DUKE MATH J, V8, P335, DOI 10.1215/S0012-7094-41-00826-8
[7]   MELLIN TRANSFORMS AND ASYMPTOTICS - HARMONIC SUMS [J].
FLAJOLET, P ;
GOURDON, X ;
DUMAS, P .
THEORETICAL COMPUTER SCIENCE, 1995, 144 (1-2) :3-58
[8]   SINGULARITY ANALYSIS OF GENERATING-FUNCTIONS [J].
FLAJOLET, P ;
ODLYZKO, A .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1990, 3 (02) :216-240
[9]  
Flajolet P., 2009, ANAL COMBINATORICS
[10]   THE NUMBER OF DISTINCT PART SIZES IN A RANDOM INTEGER PARTITION [J].
GOH, WMY ;
SCHMUTZ, E .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1995, 69 (01) :149-158