Transfer-free multi-layer graphene as a diffusion barrier

被引:43
作者
Mehta, R. [1 ,2 ,3 ]
Chugh, S. [1 ,2 ]
Chen, Z. [1 ,2 ]
机构
[1] Purdue Univ, Sch Elect & Comp Engn, 1205 W State St, W Lafayette, IN 47907 USA
[2] Purdue Univ, Birck Nanotechnol Ctr, 1205 W State St, W Lafayette, IN 47907 USA
[3] Intel Corp, 2501 NW 229th Ave, Hillsboro, OR 97124 USA
关键词
Grain boundaries - Photoelectrochemical cells - Silica - Copper - Capacitance - Heavy ions - Plasma CVD - Plasma enhanced chemical vapor deposition - Silicon oxides - Temperature - Diffusion barriers - Flexible electronics;
D O I
10.1039/c6nr07637h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphene is a promising ultra-thin barrier against undesired mass transport, however, the high deposition temperatures or the defect inducing post-deposition transfer processes limit its widespread applicability. Herein we report on the successful blocking of copper (Cu) ion diffusion by large area multi-layer graphene (MLG) membranes deposited directly on silicon oxide (SiO2) via low temperature plasma-enhanced chemical vapor deposition. The barrier strength of MLG is compared to evaporated tantalum (Ta) by applying positive bias-temperature stress (BTS) to Cu/barrier/SiO2/Si test structures. After constant BTS of 4 x 10(6) V cm(-1) at 400 K for 50 min, the MLG barrier device exhibits a negligible flat band voltage shift in capacitance-voltage measurements and no discernible current peak in triangular voltage scans, whereas the Ta barrier allows significant Cu ion transport. Highly limited Cu ion diffusion through MLG suggests that lower energy diffusion paths, like grain boundaries and defects of individual graphene layers, do not align in the direction of an applied stress field. In general, the presented low-temperature direct growth MLG membranes can block undesirable diffusion in many applications, and are especially suitable as Cu diffusion barriers in integrated circuit chips, photovoltaic cells and flexible electronic devices.
引用
收藏
页码:1827 / 1833
页数:7
相关论文
共 36 条
[1]   Copper ion transport induced dielectric failure: Inclusion of elastic drift and consequences for reliability [J].
Achanta, Ravi S. ;
Plawsky, Joel L. ;
Gill, William N. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2008, 26 (06) :1497-1500
[2]   Interlevel dielectric failures in copper/low-k structures [J].
Alers, GB ;
Jow, K ;
Shaviv, R ;
Kooi, G ;
Ray, GW .
IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, 2004, 4 (02) :148-152
[3]   Impermeable atomic membranes from graphene sheets [J].
Bunch, J. Scott ;
Verbridge, Scott S. ;
Alden, Jonathan S. ;
van der Zande, Arend M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
NANO LETTERS, 2008, 8 (08) :2458-2462
[4]   Direct HRTEM Observation of Ultrathin Freestanding Ionic Liquid Film on Carbon Nanotube Grid [J].
Chen, Shimou ;
Kobayashi, Keita ;
Kitaura, Ryo ;
Miyata, Yasumitsu ;
Shinohara, Hisanori .
ACS NANO, 2011, 5 (06) :4902-4908
[5]   Optical Relaxation Time Enhancement in Graphene-Passivated Metal Films [J].
Chugh, Sunny ;
Mehta, Ruchit ;
Man, Mengren ;
Chen, Zhihong .
SCIENTIFIC REPORTS, 2016, 6
[6]   Comparison of graphene growth on arbitrary non-catalytic substrates using low-temperature PECVD [J].
Chugh, Sunny ;
Mehta, Ruchit ;
Lu, Ning ;
Dios, Francis D. ;
Kim, Moon J. ;
Chen, Zhihong .
CARBON, 2015, 93 :393-399
[7]  
Croes K., 2014, ECS J SOLID STATE SC, V4, P1
[8]   Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects [J].
Ferrari, Andrea C. .
SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) :47-57
[9]   Copper ion diffusion in porous and nonporous SiO2-based dielectrics using bias thermal stress and thermal stress tests [J].
Fisher, I. ;
Eizenberg, M. .
THIN SOLID FILMS, 2008, 516 (12) :4111-4121
[10]   Key reliability issues for copper integration in damascene architecture [J].
Gonella, R .
MICROELECTRONIC ENGINEERING, 2001, 55 (1-4) :245-255