Interlaminar stress analysis of composite shell structures using a geometrically nonlinear layer-wise shell finite element

被引:7
作者
Soltani, Zahra [1 ]
Kordkheili, Seyed Ali Hosseini [2 ]
机构
[1] Imperial Coll London, Dept Aeronaut, London SW7 2AZ, England
[2] Sharif Univ Technol, Ctr Res & Dev Space Sci & Technol, Aerosp Engn Dept, Tehran, Iran
关键词
Composite shell structures; Interlaminar stress distributions; Layer-wise shell finite element; Geometrically nonlinear analysis; HIGHER-ORDER; LAMINATED COMPOSITES; FREE-EDGE; ZIGZAG; MODEL; TRANSVERSE; BEHAVIOR; INPLANE;
D O I
10.1016/j.compstruct.2020.113074
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This work aims to calculate interlaminar stress distribution through the thickness of multilayered composite shell structures by employing a novel nonlinear layer-wise shell finite element formulation. Adapting the Mindlin- Reissner theory in each layer, the shear-deformable layer-wise shell element presents the interlaminar shear stress distributions by increasing the number of layers. The interlaminar normal stress distribution is then determined using the finite difference solution of the general form of equilibrium equation in the non orthogonal curvilinear grid along the Gaussian points. Two boundary conditions at the bottom and the top surfaces are satisfied by adopting the linear Lagrange interpolation function. The developed formulation is assessed through some illustrative problems solved using a proprietary finite element computer program. The results compare very well with those available in the literature and those obtained by simulations with the commercial finite element software Ansys.
引用
收藏
页数:12
相关论文
共 50 条
[21]   Nonlinear finite element analysis of functionally graded structures by enhanced assumed strain shell elements [J].
Beheshti, Alireza ;
Ramezani, Shojaa .
APPLIED MATHEMATICAL MODELLING, 2015, 39 (13) :3690-3703
[22]   Failure analysis of laminates by implementation of continuum damage mechanics in layer-wise finite element theory [J].
Mohammadi, B. ;
Hosseini-Toudeshky, H. ;
Sadr-Lahidjani, M. H. .
STRUCTURAL ENGINEERING AND MECHANICS, 2009, 33 (06) :657-674
[23]   Geometrically nonlinear analysis of laminated composite thin shells using a modified first-order shear deformable element-based Lagrangian shell element [J].
Han, Sung-Cheon ;
Tabiei, Ala ;
Park, Weon-Tae .
COMPOSITE STRUCTURES, 2008, 82 (03) :465-474
[24]   Nonlinear finite element analysis of laminated composite spherical shell vibration under uniform thermal loading [J].
Panda, S. K. ;
Mahapatra, T. R. .
MECCANICA, 2014, 49 (01) :191-213
[25]   Accurate Stress Analysis of Variable Angle Tow Shells by High-Order Equivalent-Single-Layer and Layer-Wise Finite Element Models [J].
Sanchez-Majano, Alberto Racionero ;
Azzara, Rodolfo ;
Pagani, Alfonso ;
Carrera, Erasmo .
MATERIALS, 2021, 14 (21)
[26]   Geometrically nonlinear analysis of thin-walled structures using efficient Shell-based SPH method [J].
Lin, Jun ;
Naceur, Hakim ;
Coutellier, Daniel ;
Laksimi, Abdel .
COMPUTATIONAL MATERIALS SCIENCE, 2014, 85 :127-133
[27]   Computational Modeling of a Lightweight Composite Space Reflector using Geometrically Nonlinear Solid Shell Elements [J].
Lee, K. ;
Wu, C. T. ;
Clarke, G. V. ;
Lee, S. W. .
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2008, 33 (01) :109-129
[28]   Geometrically nonlinear static and dynamic analysis of composite laminates shells with a triangular finite element [J].
Isoldi, Liercio Andre ;
Awruch, Armando Miguel ;
Teixeira, Paulo Roberto de F. ;
Morsch, Inacio B. .
JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2008, 30 (01) :84-93
[29]   The complete hydrostatic stiffness and geometrically nonlinear beam finite element analysis of floating structures [J].
Lee, Ikjae ;
Kim, Moohyun .
COMPUTERS & STRUCTURES, 2025, 313
[30]   Nonlinear hygro-thermo-elastic vibration analysis of doubly curved composite shell panel using finite element micromechanical model [J].
Mahapatra, T. R. ;
Panda, Subrata K. ;
Kar, Vishesh R. .
MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2016, 23 (11) :1343-1359