Heavy phosphorus doping by epitaxial growth on the (111) diamond surface

被引:51
作者
Grotjohn, T. A. [1 ]
Tran, D. T. [1 ]
Yaran, M. K. [2 ]
Demlow, S. N. [1 ]
Schuelke, T. [2 ]
机构
[1] Michigan State Univ, E Lansing, MI 48824 USA
[2] Fraunhofer Ctr Coatings & Laser Applicat, E Lansing, MI 48824 USA
关键词
Diamond film; n-type doping; Plasma CVD; CHEMICAL-VAPOR-DEPOSITION; HIGH-POWER-DENSITY; (001)-ORIENTED DIAMOND; ELECTRICAL-PROPERTIES; FILMS; LAYERS;
D O I
10.1016/j.diamond.2014.02.009
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Semiconducting n-type diamond can be fabricated using phosphorus as a substitutional donor dopant. The dopant activation energy level at 0.58 eV is deep. At high dopant concentrations of 10(20) cm(-3) the activation energy reduces to less than 0.05 eV. Phosphorus doping at concentrations of 10(20) cm(-3) or higher has been achieved with epitaxial growth on the (111) diamond crystallographic surface. In this work epitaxial growth of diamond with high phosphorus concentrations exceeding 10(20) cm(-3) is performed using a microwave plasma-assisted chemical vapor deposition process with process conditions that include a pressure of 160 Torr. This pressure is higher than previous phosphorus doping reports of (111) surface diamond growth. The other growth conditions include a feedgas mixture of 0.25% methane and 500 ppm phosphine in hydrogen, and a substrate temperature of 950-1000 degrees C. The measured growth rate was 1.25 mu m/h. The room temperature resistivity of the heavily phosphorus doped diamond was 120-150 ohm-cm and the activation energy was 0.027 eV. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:129 / 133
页数:5
相关论文
共 27 条
[1]   MODELS FOR CONTACTS TO PLANAR DEVICES [J].
BERGER, HH .
SOLID-STATE ELECTRONICS, 1972, 15 (02) :145-&
[2]   Epitaxial growth of phosphorus doped diamond on {111} substrate [J].
Casanova, N ;
Tajani, A ;
Gheeraert, E ;
Bustarret, E ;
Garrido, JA ;
Nebel, CE ;
Stutzmann, M .
DIAMOND AND RELATED MATERIALS, 2002, 11 (3-6) :328-331
[3]   Phosphorus incorporation and activity in (100)-oriented homoepitaxial diamond layers [J].
Frangieh, G. ;
Pinault, M. -A. ;
Barjon, J. ;
Tillocher, T. ;
Jomard, F. ;
Chevallier, J. .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2009, 206 (09) :2000-2003
[4]   Improved microwave plasma cavity reactor for diamond synthesis at high-pressure and high power density [J].
Hemawan, K. W. ;
Grotjohn, T. A. ;
Reinhard, D. K. ;
Asmussen, J. .
DIAMOND AND RELATED MATERIALS, 2010, 19 (12) :1446-1452
[5]   Electrical properties of lateral p-n junction diodes fabricated by selective growth of n plus diamond [J].
Hoshino, Yuto ;
Kato, Hiromitsu ;
Makino, Toshiharu ;
Ogura, Masahiko ;
Iwasaki, Takayuki ;
Hatano, Mutsuko ;
Yamasaki, Satoshi .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2012, 209 (09) :1761-1764
[6]   Diamond Junction Field-Effect Transistors with Selectively Grown n+-Side Gates [J].
Iwasaki, Takayuki ;
Hoshino, Yuto ;
Tsuzuki, Kohei ;
Kato, Hiromitsu ;
Makino, Toshiharu ;
Ogura, Masahiko ;
Takeuchi, Daisuke ;
Matsumoto, Tsubasa ;
Okushi, Hideyo ;
Yamasaki, Satoshi ;
Hatano, Mutsuko .
APPLIED PHYSICS EXPRESS, 2012, 5 (09)
[7]   Formation of stacking faults containing microtwins in (111) chemical-vapor-deposited diamond homoepitaxial layers [J].
Kasu, M ;
Makimoto, T ;
Ebert, W ;
Kohn, E .
APPLIED PHYSICS LETTERS, 2003, 83 (17) :3465-3467
[8]   Lightly phosphorus-doped homoepitaxial diamond films grown by chemical vapor deposition [J].
Katagiri, M ;
Isoya, J ;
Koizumi, S ;
Kanda, H .
APPLIED PHYSICS LETTERS, 2004, 85 (26) :6365-6367
[9]  
KATO H, 2005, APPL PHYS LETT, V86
[10]   N-type diamond growth by phosphorus doping on (001)-oriented surface [J].
Kato, Hiromitsu ;
Makino, Toshiharu ;
Yamasaki, Satoshi ;
Okushi, Hideyo .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (20) :6189-6200