FUSION OF 2-ELEMENTS IN PERIODIC GROUPS WITH FINITE SYLOW 2-SUBGROUPS

被引:2
作者
Lytkina, D., V [1 ]
Mazurov, V. D. [1 ]
机构
[1] Sobolev Inst Math, 4 Koptyuga Ave, Novosibirsk 630090, Russia
来源
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA | 2020年 / 17卷
关键词
periodic group; Sylow subgroup; fusion;
D O I
10.33048/semi.2020.17.131
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article contributes to the study of a fusion of subsets in finite Sylow 2-subgroups of periodic groups. We extend well-known theorems on fusion of subsets in Sylow subgroups of finite groups by Burnside and Alperin to periodic groups which contain a finite Sylow 2-subgroup.
引用
收藏
页码:1953 / 1958
页数:6
相关论文
共 10 条
[1]   SYLOW INTERSECTIONS AND FUSION [J].
ALPERIN, JL .
JOURNAL OF ALGEBRA, 1967, 6 (02) :222-&
[2]  
BELYAEV VV, 1982, STUD SCI MATH HUNG, V17, P137
[3]  
Belyaev VV., 1987, Algebra and Logic, V26, P315, DOI [10.1007/BF01978688, DOI 10.1007/BF01978688]
[4]  
Hall M., 1976, THEORY GROUPS
[5]  
Hall Ph., 1959, J LOND MATH SOC, V34, P306
[6]   PERIODIC-GROUPS IN WHICH THE CENTRALIZER OF AN INVOLUTION HAS BOUNDED ORDER [J].
HARTLEY, B ;
MEIXNER, T .
JOURNAL OF ALGEBRA, 1980, 64 (01) :285-291
[7]  
HICKIN K, 1986, P LOND MATH SOC, V52, P53
[8]  
Lytkina DV, 2011, SIBERIAN MATH J+, V52, P871
[9]  
Shunkov V.P., 1972, Algebra and Logic, V11, P260, DOI DOI 10.1007/BF02219098
[10]  
Shunkov VP., 1968, ALGEBRA LOGIC, V7, P66, DOI [10.1007/BF02218754, DOI 10.1007/BF02218754]