THE DIRAC COHOMOLOGY OF A FINITE DIMENSIONAL REPRESENTATION

被引:0
作者
Mehdi, S. [1 ]
Zierau, R. [2 ]
机构
[1] Univ Metz, Dept Math, CNRS, F-57045 Metz 1, France
[2] Oklahoma State Univ, Dept Math, Stillwater, OK 74078 USA
关键词
OPERATOR;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Dirac cohomology of a finite dimensional representation of a complex semisimple Lie algebra g, with respect to any quadratic subalgebra h, is computed. This generalizes a formula obtained by Kostant in the case where g and h have equal rank, and by Huang, Kang and Pandzic in the case where h is the fixed point of an involution.
引用
收藏
页码:1507 / 1512
页数:6
相关论文
共 6 条
[1]  
Goodman Roe, 1998, ENCY MATH ITS APPL, V68
[2]   DIRAC COHOMOLOGY OF SOME HARISH-CHANDRA MODULES [J].
Huang, Jing-Song ;
Kang, Yi-Fang ;
Pandzic, Pavle .
TRANSFORMATION GROUPS, 2009, 14 (01) :163-173
[3]   Dirac cohomology, unitary representations and a proof of a conjecture of Vogan [J].
Huang, JS ;
Pandzic, P .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 15 (01) :185-202
[4]   A cubic Dirac operator and the emergence of Euler number multiplets of representations for equal rank subgroups [J].
Kostant, B .
DUKE MATHEMATICAL JOURNAL, 1999, 100 (03) :447-501
[5]  
Kostant B, 2003, PROG MATH, V210, P69
[6]   DIRAC OPERATOR AND DISCRETE SERIES [J].
PARTHASARATHY, R .
ANNALS OF MATHEMATICS, 1972, 96 (01) :1-+