On optimality of approximate low rank solutions of large-scale matrix equations

被引:10
作者
Benner, Peter [1 ,2 ]
Breiten, Tobias [1 ,3 ]
机构
[1] Max Planck Inst Dynam Complex Tech Syst, D-39106 Magdeburg, Germany
[2] TU Chemnitz, Fak Math, D-09107 Chemnitz, Germany
[3] Karl Franzens Univ Graz, Inst Math & Sci Comp, A-8010 Graz, Austria
关键词
Matrix equations; Low rank approximations; Rational Krylov subspaces; H-2-model reduction; H-2; MODEL-REDUCTION; KRYLOV SUBSPACE; LYAPUNOV;
D O I
10.1016/j.sysconle.2014.02.005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we discuss some optimality results for the approximation of large-scale matrix equations. In particular, this includes the special case of Lyapunov and Sylvester equations, respectively. We show a relation between the iterative rational Krylov algorithm and a Riemannian optimization method which recently has been shown to locally minimize a certain energy norm of the underlying Lyapunov operator. Moreover, we extend the results for a more general setting leading to a slight modification of IRKA. By means of some numerical test examples, we show the efficiency of the proposed methods. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:55 / 64
页数:10
相关论文
共 25 条
[1]  
[Anonymous], 2003, ITERATIVE METHODS SP, DOI DOI 10.1137/1.9780898718003
[2]  
ANTOULAS A. C., 2005, ADV DES CONTROL, DOI 10.1137/1.9780898718713
[3]   On the decay rate of Hankel singular values and related issues [J].
Antoulas, AC ;
Sorensen, DC ;
Zhou, Y .
SYSTEMS & CONTROL LETTERS, 2002, 46 (05) :323-342
[4]   ALGORITHM - SOLUTION OF MATRIX EQUATION AX+XB = C [J].
BARTELS, RH ;
STEWART, GW .
COMMUNICATIONS OF THE ACM, 1972, 15 (09) :820-&
[5]  
Benner P., 2011, MPIMD1111
[6]   INTERPOLATION-BASED H2-MODEL REDUCTION OF BILINEAR CONTROL SYSTEMS [J].
Benner, Peter ;
Breiten, Tobias .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2012, 33 (03) :859-885
[7]   On the ADI method for Sylvester equations [J].
Benner, Peter ;
Li, Ren-Cang ;
Truhar, Ninoslav .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 233 (04) :1035-1045
[8]   ANALYSIS OF THE RATIONAL KRYLOV SUBSPACE AND ADI METHODS FOR SOLVING THE LYAPUNOV EQUATION [J].
Druskin, V. ;
Knizhnerman, L. ;
Simoncini, V. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (05) :1875-1898
[9]   Convergence of the Iterative Rational Krylov Algorithm [J].
Flagg, Garret ;
Beattie, Christopher ;
Gugercin, Serkan .
SYSTEMS & CONTROL LETTERS, 2012, 61 (06) :688-691
[10]   On the ADI method for the Sylvester equation and the optimal-H2 points [J].
Flagg, Garret M. ;
Gugercin, Serkan .
APPLIED NUMERICAL MATHEMATICS, 2013, 64 :50-58