Optimal size estimates for the inverse conductivity problem with one measurement

被引:59
作者
Alessandrini, G [1 ]
Rosset, E
Seo, JK
机构
[1] Univ Trieste, Dipartimento Sci Matemat, I-34100 Trieste, Italy
[2] Yonsei Univ, Dept Math, Seoul 120749, South Korea
关键词
inverse conductivity problem; size estimates; Muckenhoupt weights;
D O I
10.1090/S0002-9939-99-05474-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove upper and lower estimates on the measure of an inclusion D in a conductor Omega in terms of one pair of current and potential boundary measurements. The growth rates of such estimates are essentially best possible.
引用
收藏
页码:53 / 64
页数:12
相关论文
共 21 条
[1]  
Adams R. A., 1975, SOBOLEV SPACES
[2]   LOCAL UNIQUENESS IN THE INVERSE CONDUCTIVITY PROBLEM WITH ONE MEASUREMENT [J].
ALESSANDRINI, G ;
ISAKOV, V ;
POWELL, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (08) :3031-3041
[3]   The inverse conductivity problem with one measurement: Bounds on the size of the unknown object [J].
Alessandrini, G ;
Rosset, E .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1998, 58 (04) :1060-1071
[4]  
ALESSANDRINI G, 1989, B UNIONE MAT ITAL, V23, P243
[5]  
Alessandrini G., 1996, Rend. Istit. Mat. Univ. Trieste, V28, P351
[6]   THE INVERSE CONDUCTIVITY PROBLEM WITH ONE MEASUREMENT - UNIQUENESS FOR CONVEX POLYHEDRA [J].
BARCELO, B ;
FABES, E ;
SEO, JK .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 122 (01) :183-189
[7]  
BELLOUT H, 1988, ARCH RATION MECH AN, V101, P143, DOI 10.1007/BF00251458
[8]   STABILITY FOR AN INVERSE PROBLEM IN POTENTIAL-THEORY [J].
BELLOUT, H ;
FRIEDMAN, A ;
ISAKOV, V .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 332 (01) :271-296
[9]  
BRYAN K, 1990, COMMUN PART DIFF EQ, V15, P503
[10]  
CHEREDNICHENKO VG, 1982, DIFF URAVN, V18, P682