Examining the role of ultra-thin atomic layer deposited metal oxide barrier layers on CdTe/ITO interface stability during the fabrication of solution processed nanocrystalline solar cells

被引:20
作者
Chambers, Benjamin A. [1 ]
MacDonald, Brandon I. [2 ,4 ,5 ]
Ionescu, Mihail [3 ]
Deslandes, Alec [3 ]
Quinton, Jamie S. [1 ]
Jasieniak, Jacek J. [2 ]
Andersson, Gunther G. [1 ]
机构
[1] Flinders Univ S Australia, Flinders Ctr NanoScale Sci & Technol, Adelaide, SA 5001, Australia
[2] CSIRO, Mat Sci & Engn, Clayton, Vic 3169, Australia
[3] Australian Nucl Sci & Technol Org, Lucas Heights, NSW 2234, Australia
[4] Univ Melbourne, Sch Chem, Parkville, Vic 3010, Australia
[5] Univ Melbourne, Inst Bio21, Parkville, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
Solar cell; CdTe; Nanoparticle; Interface; Solution-processed; FILMS;
D O I
10.1016/j.solmat.2014.02.018
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Solution processed CdTe layers are a potentially low-cost alternative for use in thin-film solar cells. We have recently reported the use of such nanocrystalline layers within ITO/CdTe/ZnO/Al device architectures. One key concern with this type of device structure is the possibility of atomic scale interdiffusion between the ITO and CdTe layers, which can result in deleterious n-type doping of the CdTe layer. Rutherford Backscattering has been used to study the chemical composition across the ITO/CdTe interface as a function of thermal annealing temperature. Through these measurements we verify that interdiffision is observed across the interface for annealing temperatures above 200 degrees C, and the extent of interdiffusion increases with temperature. Ultra-thin alumina, zirconia and titania layers deposited between the ITO and CdTe layers have been studied for their potential to act as a diffusion barrier. All investigated barriers successfully suppress interdiffusion. The outcomes of these compositional studies are directly compared to solar cells fabricated under analogous processing conditions, demonstrating improved cell performance. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:164 / 169
页数:6
相关论文
共 27 条
[1]  
Allbright S.P., 1994, MODULE PROCESS OPTIM
[2]  
Anderson I.E., 2009, ALL INORGANIC SPIN C
[3]   Comparison of different thin film absorbers used in eta-solar cells [J].
Belaidi, A ;
Bayón, R ;
Dloczik, L ;
Ernst, K ;
Lux-Steiner, MC ;
Könenkamp, R .
THIN SOLID FILMS, 2003, 431 :488-491
[4]   A NEW SILICON P-N JUNCTION PHOTOCELL FOR CONVERTING SOLAR RADIATION INTO ELECTRICAL POWER [J].
CHAPIN, DM ;
FULLER, CS ;
PEARSON, GL .
JOURNAL OF APPLIED PHYSICS, 1954, 25 (05) :676-677
[5]   The role of the spray pyrolysed Al2O3 barrier layer in achieving high efficiency solar cells on flexible steel substrates [J].
Gledhill, Sophie E. ;
Zykov, Anton ;
Rissom, Thorsten ;
Caballero, Raquel ;
Kaufmann, Christian A. ;
Fischer, Christian-Herbert ;
Lux-Steiner, Martha ;
Efimova, Varvara ;
Hoffmann, Volker ;
Oswald, Steffen .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2011, 104 (01) :407-413
[6]   Thin-film solar cells: review of materials, technologies and commercial status [J].
Green, Martin A. .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2007, 18 (Suppl 1) :S15-S19
[7]   Sulfide Nanocrystal Inks for Dense Cu(In1-xGax)(S1-ySey)2 Absorber Films and Their Photovoltaic Performance [J].
Guo, Qijie ;
Ford, Grayson M. ;
Hillhouse, Hugh W. ;
Agrawal, Rakesh .
NANO LETTERS, 2009, 9 (08) :3060-3065
[8]   Air-stable all-inorganic nanocrystal solar cells processed from solution [J].
Gur, I ;
Fromer, NA ;
Geier, ML ;
Alivisatos, AP .
SCIENCE, 2005, 310 (5747) :462-465
[9]   Diffusion barriers for CIGS solar cells on metallic substrates [J].
Herz, K ;
Eicke, A ;
Kessler, F ;
Wächter, R ;
Powalla, M .
THIN SOLID FILMS, 2003, 431 :392-397
[10]   Solution-Processed Sintered Nanocrystal Solar Cells via Layer-by-Layer Assembly [J].
Jasieniak, Jacek ;
MacDonald, Brandon I. ;
Watkins, Scott E. ;
Mulvaney, Paul .
NANO LETTERS, 2011, 11 (07) :2856-2864