A scheme to observe universal breathing mode and Berezinskii-Kosterlitz-Thouless phase transition in a two-dimensional photon gas

被引:5
|
作者
Vyas, Vivek M. [1 ,2 ]
Panigrahi, Prasanta K. [1 ]
Banerji, J. [2 ]
机构
[1] Indian Inst Sci Educ & Res IISER Kolkata, Dept Phys Sci, Mohanpur 741252, Nadia, India
[2] Phys Res Lab, Div Theoret Phys, Ahmadabad 380009, Gujarat, India
关键词
Bose-Einstein condensation; Berezinskii-Kosterlitz-Thouless phase; transition; SUPERFLUID DENSITY; 2; DIMENSIONS; SYMMETRY; SYSTEMS; PHYSICS; ORDER;
D O I
10.1016/j.physleta.2014.02.035
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A system of two-dimensional photon gas has recently been realized experimentally. We show that this setup can be used to observe a universal breathing mode of photon gas and a modification in the experimental setup would open up a possibility of observing the Berezinskii-Kosterlitz-Thouless (BKT) phase transition in such a system. Furthermore, the universal jump in the superfluid density of light in the output channel can be used as an unambiguous signature for the experimental verification of the BKT transition. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1434 / 1437
页数:4
相关论文
共 50 条
  • [41] The Berezinskii–Kosterlitz–Thouless Transition and Melting Scenarios of Two-Dimensional Systems
    V. N. Ryzhov
    E. A. Gaiduk
    E. E. Tareyeva
    Yu. D. Fomin
    E. N. Tsiok
    Physics of Particles and Nuclei, 2020, 51 : 786 - 790
  • [42] Berezinskii-Kosterlitz-Thouless phase transition with Rabi-coupled bosons
    Furutani, Koichiro
    Perali, Andrea
    Salasnich, Luca
    PHYSICAL REVIEW A, 2023, 107 (04)
  • [43] First-order and Berezinskii-Kosterlitz-Thouless phase transitions in two-dimensional generalized XY models
    da Silva, P. A.
    Campos-Lopes, R. J.
    Pereira, A. R.
    PHYSICAL REVIEW B, 2024, 110 (10)
  • [44] Hybrid Berezinskii-Kosterlitz-Thouless and Ising topological phase transition in the generalized two-dimensional XY model using tensor networks
    Song, Feng-Feng
    Zhang, Guang-Ming
    PHYSICAL REVIEW B, 2021, 103 (02)
  • [45] Liquid crystal phases of two-dimensional dipolar gases and Berezinskii-Kosterlitz-Thouless melting
    Zhigang Wu
    Jens K. Block
    Georg M. Bruun
    Scientific Reports, 6
  • [46] Fluctuation conductance and the Berezinskii-Kosterlitz-Thouless transition in two dimensional epitaxial NbTiN ultrathin films
    Makise, K.
    Terai, H.
    Yamashita, T.
    Miki, S.
    Wang, Z.
    Uzawa, Y.
    Ezaki, S.
    Odou, T.
    Shinozaki, B.
    26TH INTERNATIONAL CONFERENCE ON LOW TEMPERATURE PHYSICS (LT26), PTS 1-5, 2012, 400
  • [47] Berezinskii-Kosterlitz-Thouless transition in a trapped quasi-two-dimensional Fermi gas near a Feshbach resonance
    Zhang, Wei
    Lin, G. -D.
    Duan, L. -M.
    PHYSICAL REVIEW A, 2008, 78 (04):
  • [48] Algebraic order and the Berezinskii-Kosterlitz-Thouless transition in an exciton-polariton gas
    Nitsche, Wolfgang H.
    Kim, Na Young
    Roumpos, Georgios
    Schneider, Christian
    Kamp, Martin
    Hofling, Sven
    Forchel, Alfred
    Yamamoto, Yoshihisa
    PHYSICAL REVIEW B, 2014, 90 (20):
  • [49] Probing the Berezinskii-Kosterlitz-Thouless vortex unbinding transition in two-dimensional superconductors using local noise magnetometry
    Curtis, Jonathan B.
    Maksimovic, Nikola
    Poniatowski, Nicholas R.
    Yacoby, Amir
    Halperin, Bertrand
    Narang, Prineha
    Demler, Eugene
    PHYSICAL REVIEW B, 2024, 110 (14)
  • [50] The trapped two-dimensional Bose gas:: from Bose-Einstein condensation to Berezinskii-Kosterlitz-Thouless physics
    Hadzibabic, Z.
    Krueger, P.
    Cheneau, M.
    Rath, S. P.
    Dalibard, J.
    NEW JOURNAL OF PHYSICS, 2008, 10