Constraint Satisfaction Problems Solvable by Local Consistency Methods

被引:113
作者
Barto, Libor [1 ]
Kozik, Marcin [2 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Dept Algebra, Prague 18675 8, Czech Republic
[2] Jagiellonian Univ, Theoret Comp Sci Dept, Fac Math & Comp Sci, PL-30348 Krakow, Poland
关键词
Algorithms; Theory; Constraint satisfaction problem; local consistency checking; BOUNDED WIDTH;
D O I
10.1145/2556646
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We prove that constraint satisfaction problems without the ability to count are solvable by the local consistency checking algorithm. This settles three (equivalent) conjectures: Feder-Vardi [SICOMP'98], Bulatov [LICS'04] and Larose-Zadori [AU'07].
引用
收藏
页数:19
相关论文
共 33 条
[1]  
BARTO L, 2013, MALTSEV CONDIT UNPUB
[2]  
BARTO L, 2013, COLLAPSE BOUND UNPUB
[3]  
Barto L, 2012, STOC'12: PROCEEDINGS OF THE 2012 ACM SYMPOSIUM ON THEORY OF COMPUTING, P931
[4]   New conditions for Taylor varieties and CSP [J].
Barto, Libor ;
Kozik, Marcin .
25TH ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS 2010), 2010, :100-109
[5]   Constraint Satisfaction Problems of Bounded Width [J].
Barto, Libor ;
Kozik, Marcin .
2009 50TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE: FOCS 2009, PROCEEDINGS, 2009, :595-603
[6]   CONGRUENCE DISTRIBUTIVITY IMPLIES BOUNDED WIDTH [J].
Barto, Libor ;
Kozik, Marcin .
SIAM JOURNAL ON COMPUTING, 2009, 39 (04) :1531-1542
[7]  
Bergman C.H., 2011, Universal Algebra: Fundamentals and Selected Topics
[8]  
Berman J, 2010, T AM MATH SOC, V362, P1445
[9]   On the structure of abstract algebras [J].
Birkhoff, G .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1935, 31 :433-454
[10]  
Bodnarchuk VG., 1969, KIBERNETIKA KIEV, V5, P1