Density based fuzzy c-means clustering of non-convex patterns

被引:18
作者
Beliakov, Gleb [1 ]
King, Matthew [1 ]
机构
[1] Deakin Univ, Sch Informat Technol, Burwood 3125, Australia
关键词
data mining; non-linear programming; clustering; fuzzy c-means; non-smooth optimization;
D O I
10.1016/j.ejor.2005.10.007
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose a new technique to perform unsupervised data classification (clustering) based on density induced metric and non-smooth optimization. Our goal is to automatically recognize multidimensional clusters of non-convex shape. We present a modification of the fuzzy c-means algorithm, which uses the data induced metric, defined with the help of Delaunay triangulation. We detail computation of the distances in such a metric using graph algorithms. To find optimal positions of cluster prototypes we employ the discrete gradient method of non-smooth optimization. The new clustering method is capable to identify non-convex overlapped d-dimensional clusters. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:717 / 728
页数:12
相关论文
共 26 条
[1]  
[Anonymous], 1992, MULTIVARIATE DENSITY
[2]  
[Anonymous], Pattern Recognition With Fuzzy Objective Function Algorithms
[3]  
AURENHAMMER F, 1991, SURVEYS, V23, P345
[4]  
BAGIROV A, 1999, J INVESTIGACAO OPERA, V19, P75
[5]   A method for minimization of quasidifferentiable functions [J].
Bagirov, AM .
OPTIMIZATION METHODS & SOFTWARE, 2002, 17 (01) :31-60
[6]   The Quickhull algorithm for convex hulls [J].
Barber, CB ;
Dobkin, DP ;
Huhdanpaa, H .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1996, 22 (04) :469-483
[7]  
Beliakov G, 2003, LECT NOTES COMPUT SC, V2659, P592
[8]  
BELIAKOV G, 2001, P 10 FUZZ IEEE C MEL
[9]   Voronoi diagrams in higher dimensions under certain polyhedral distance functions [J].
Boissonnat, JD ;
Sharir, M ;
Tagansky, B ;
Yvinec, M .
DISCRETE & COMPUTATIONAL GEOMETRY, 1998, 19 (04) :485-519
[10]  
Christofides N, 1975, GRAPH THEORY ALGORIT