Finite groups and degrees of irreducible monomial characters

被引:11
作者
Pang, Linna [1 ]
Lu, Jiakuan [1 ]
机构
[1] Guangxi Normal Univ, Sch Math & Stat, Guilin 541004, Guangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Solvable groups; irreducible monomial characters;
D O I
10.1142/S0219498816500730
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a finite solvable group, let Irr(m)(G) be the set of all irreducible monomial characters of G and let p be a prime. We prove that if p vertical bar chi(1) for every nonlinear chi is an element of Irr(m)(G), then G has a normal p-complement, and if p is relatively prime to chi(1) for every chi is an element of Irr(m)(G), then G has a normal Sylow p-subgroup.
引用
收藏
页数:4
相关论文
共 4 条
[1]  
BERKOVICH Y, 1998, CHARACTERS FINITE 1
[2]  
Gallagher P., 1962, NAGOYA MATH J, V21, P223
[3]  
Isaacs I.M., 2006, CHARACTER THEORY FIN
[4]  
Michiler G. O., 1986, LECT NOTES MATH, P129