On the connection between the order of the fractional derivative and the Hausdorff dimension of a fractal function

被引:21
作者
Yao, K. [2 ,3 ,4 ]
Liang, Y. S. [1 ]
Zhang, F. [5 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Sci, Nanjing 210094, Peoples R China
[2] Nanjing Normal Univ, Dept Math, Nanjing 210097, Peoples R China
[3] Chuzhou Univ, Inst Math, Chuzhou 239000, Peoples R China
[4] PLAUST, Inst Sci, Nanjing 210000, Peoples R China
[5] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
关键词
E-INFINITY THEORY; NONLINEAR DYNAMICS; PREREQUISITES; CALCULUS;
D O I
10.1016/j.chaos.2008.09.053
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper investigates the fractional derivative of a fractal function. It has been proven that there exists certain linear connection between the order of the Weyl-Marchaud fractional derivatives(WMFD) and the Hausdorff dimension of a fractal function. Graphs and numerical results further show this linear relationship. Crown Copyright (C) 2008 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:2538 / 2545
页数:8
相关论文
共 16 条