Intrusion Detection System Based on Machine and Deep Learning Models: A Comparative and Exhaustive Study

被引:0
|
作者
Pandey, Hemlatha [1 ]
Karnavat, Tejal Lalitkumar [1 ]
Sandilya, Mandadapu Naga Sai [1 ]
Katiyar, Shashwat [1 ]
Rathore, Hemant [1 ]
机构
[1] BITS Pilani, Dept CS & IS, KK Birla Goa Campus, Sancoale, Goa, India
来源
HYBRID INTELLIGENT SYSTEMS, HIS 2021 | 2022年 / 420卷
关键词
Anomaly detection; CIC-IDS2017; Convolutional Neural Network; Deep Neural Network; KDDCup; 99; Long Short Term Memory; Machine learning;
D O I
10.1007/978-3-030-96305-7_38
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Network Intrusion Detection System plays a central role in detecting various security breaches and cyber attacks on a network. Literature suggests that machine learning techniques can successfully be used for intrusion detection, but there are many open challenges in the domain. In this paper, we performed multi-class classification for intrusion detection using different machine and deep learning techniques on four publicly available datasets. Our work focuses on evaluating the performance of the different intrusion detection models and achieving a better detection rate. Our experimental results show that hybrid CNN-LSTM and kNN models achieved an accuracy above 99% on KDDCup 99, CIC-IDS2017, and Bot-IoT datasets. These models also attain a detection rate of more than 0.9 for the DoS & DDoS attacks and an average FPR of less than 0.1 across all four datasets.
引用
收藏
页码:407 / 418
页数:12
相关论文
共 50 条
  • [21] A Comparative Study on Contemporary Intrusion Detection Datasets for Machine Learning Research
    Dwibedi, Smirti
    Pujari, Medha
    Sun, Weiqing
    2020 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENCE AND SECURITY INFORMATICS (ISI), 2020, : 123 - 128
  • [22] Intrusion Detection System for AI Box Based on Machine Learning
    Chen, Jiann-Liang
    Chen, Zheng-Zhun
    Chang, Youg-Sheng
    Li, Ching-Iang
    Kao, Tien-I
    Lin, Yu-Ting
    Xiao, Yu-Yi
    Qiu, Jian-Fu
    2023 25TH INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION TECHNOLOGY, ICACT, 2023, : 111 - 116
  • [23] An intrusion detection system based on hybrid machine learning classifier
    Reji, M.
    Joseph, Christeena
    Nancy, P.
    Mary, A. Lourdes
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (03) : 4245 - 4255
  • [24] Comparative approach on crop detection using machine learning and deep learning techniques
    Nithya, V.
    Josephine, M. S.
    Jeyabalaraja, V.
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2024, 15 (09) : 4636 - 4648
  • [25] A Comparative Study of Using Deep Learning Algorithms in Network Intrusion Detection
    Elsayed, Salwa
    Mohamed, Khalil
    Madkour, Mohamed Ashraf
    IEEE ACCESS, 2024, 12 : 58851 - 58870
  • [26] An intrusion detection system for health-care system using machine and deep learning
    Pande, Sagar
    Khamparia, Aditya
    Gupta, Deepak
    WORLD JOURNAL OF ENGINEERING, 2022, 19 (02) : 166 - 174
  • [27] Intrusion Detection Using Machine Learning and Deep Learning Techniques
    Calisir, Sinan
    Atay, Remzi
    Pehlivanoglu, Meltem Kurt
    Duru, Nevcihan
    2019 4TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2019, : 656 - 660
  • [28] Hybrid intrusion detection models based on GWO optimized deep learning
    Elsaid, Shaimaa Ahmed
    Shehab, Esraa
    Mattar, Ahmed M.
    Azar, Ahmad Taher
    Hameed, Ibrahim A.
    DISCOVER APPLIED SCIENCES, 2024, 6 (10)
  • [29] Effective intrusion detection model through the combination of a signature-based intrusion detection system and a machine learning-based intrusion detection system
    Weon, Ill-Young
    Song, Doo Heon
    Lee, Chang-Hoon
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2006, 22 (06) : 1447 - 1464
  • [30] A Multifractal Analysis and Machine Learning Based Intrusion Detection System with an Application in a UAS/RADAR System
    Zhang, Ruohao
    Condomines, Jean-Philippe
    Lochin, Emmanuel
    DRONES, 2022, 6 (01)