High-bandwidth multimode self-sensing in bimodal atomic force microscopy

被引:36
|
作者
Ruppert, Michael G. [1 ]
Moheimani, S. O. Reza [2 ]
机构
[1] Univ Newcastle, Sch Elect Engn & Comp Sci, Callaghan, NSW 2308, Australia
[2] Univ Texas Dallas, Dept Mech Engn, Richardson, TX 75080 USA
来源
基金
澳大利亚研究理事会;
关键词
atomic force microscopy; charge sensing; feedthrough cancellation; multimode sensor; piezoelectric cantilever; self-sensing; RESOLUTION; ELEMENTS;
D O I
10.3762/bjnano.7.26
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Using standard microelectromechanical system (MEMS) processes to coat a microcantilever with a piezoelectric layer results in a versatile transducer with inherent self-sensing capabilities. For applications in multifrequency atomic force microscopy (MF-AFM), we illustrate that a single piezoelectric layer can be simultaneously used for multimode excitation and detection of the cantilever deflection. This is achieved by a charge sensor with a bandwidth of 10 MHz and dual feedthrough cancellation to recover the resonant modes that are heavily buried in feedthrough originating from the piezoelectric capacitance. The setup enables the omission of the commonly used piezoelectric stack actuator and optical beam deflection sensor, alleviating limitations due to distorted frequency responses and instrumentation cost, respectively. The proposed method benefits from a more than two orders of magnitude increase in deflection to strain sensitivity on the fifth eigenmode leading to a remarkable signal-to-noise ratio. Experimental results using bimodal AFM imaging on a two component polymer sample validate that the self-sensing scheme can therefore be used to provide both the feedback signal, for topography imaging on the fundamental mode, and phase imaging on the higher eigenmode.
引用
收藏
页码:284 / 295
页数:12
相关论文
共 50 条
  • [31] Force sensing and mapping by atomic force microscopy
    Green, NH
    Allen, S
    Davies, MC
    Roberts, CJ
    Tendler, SJB
    Williams, PM
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2002, 21 (01) : 64 - 73
  • [32] High-bandwidth force and impedance control for industrial robots
    Freund, E
    Pesara, J
    ROBOTICA, 1998, 16 : 75 - 87
  • [33] High-bandwidth force and impedance control for industrial robots
    Freund, Eckhard
    Pesara, Juergen
    Robotica, 1998, 16 (pt 1): : 75 - 87
  • [34] Molecular dynamics simulation of bimodal atomic force microscopy
    Dou, Zhipeng
    Qian, Jianqiang
    Li, Yingzi
    Wang, Zhenyu
    Zhang, Yingxu
    Lin, Rui
    Wang, Tingwei
    ULTRAMICROSCOPY, 2020, 212
  • [35] Theory of phase spectroscopy in bimodal atomic force microscopy
    Lozano, Jose R.
    Garcia, Ricardo
    PHYSICAL REVIEW B, 2009, 79 (01):
  • [36] High-Bandwidth Clamp Force Control for an Electromechanical Brake
    Lee, Chih Feng
    Manzie, Chris
    SAE INTERNATIONAL JOURNAL OF PASSENGER CARS-ELECTRONIC AND ELECTRICAL SYSTEMS, 2012, 5 (02): : 590 - 599
  • [37] Self-Sensing Force Control of a Piezoelectric Actuator
    Badel, Adrien
    Qiu, Jinhao
    Nakano, Tetsuaki
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2008, 55 (12) : 2571 - 2581
  • [38] High-bandwidth nanopositioner with magnetoresistance based position sensing
    Kartik, Venkataraman
    Sebastian, Abu
    Tuma, Tomas
    Pantazi, Angeliki
    Pozidis, Haralampos
    Sahoo, Deepak R.
    MECHATRONICS, 2012, 22 (03) : 295 - 301
  • [39] Force spectroscopy using bimodal frequency modulation atomic force microscopy
    Aksoy, M. Deniz
    Atalar, A.
    PHYSICAL REVIEW B, 2011, 83 (07):
  • [40] High-bandwidth, sub-Doppler atomic beam interferometry
    Black, Adam T.
    Kwolek, Jonathan M.
    OPTICAL AND QUANTUM SENSING AND PRECISION METROLOGY II, 2022, 12016