Implicit Regularization with Polynomial Growth in Deep Tensor Factorization

被引:0
作者
Hariz, Kais [1 ,2 ]
Kadri, Hachem [1 ]
Ayache, Stephane [1 ]
Moakher, Maher [2 ]
Artieres, Thierry [1 ,3 ]
机构
[1] Aix Marseille Univ, CNRS, LIS, Marseille, France
[2] Univ Tunis El Manar, Natl Engn Sch Tunis, LAMSIN, Tunis, Tunisia
[3] Ecole Cent Marseille, Marseille, France
来源
INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162 | 2022年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study the implicit regularization effects of deep learning in tensor factorization. While implicit regularization in deep matrix and 'shallow' tensor factorization via linear and certain type of non-linear neural networks promotes low-rank solutions with at most quadratic growth, we show that its effect in deep tensor factorization grows polynomially with the depth of the network. This provides a remarkably faithful description of the observed experimental behaviour. Using numerical experiments, we demonstrate the benefits of this implicit regularization in yielding a more accurate estimation and better convergence properties.
引用
收藏
页数:18
相关论文
共 22 条
[1]  
[Anonymous], DELVING DEEP RECTIFI, DOI DOI 10.1109/ICCV.2015.123
[2]  
Arora S, 2018, PR MACH LEARN RES, V80
[3]  
Arora Sanjeev, 2019, Advances in Neural Information Processing Systems, V32
[4]   A multilinear singular value decomposition [J].
De Lathauwer, L ;
De Moor, B ;
Vandewalle, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) :1253-1278
[5]  
Du Simon S., 2018, Advances in Neural Information Processing Systems, V31
[6]   Tensor completion and low-n-rank tensor recovery via convex optimization [J].
Gandy, Silvia ;
Recht, Benjamin ;
Yamada, Isao .
INVERSE PROBLEMS, 2011, 27 (02)
[7]  
Ge R., 2021, ADV NEUR IN, V34
[8]  
Grasedyck L., 2013, GAMM MITT, V36, P53, DOI DOI 10.1002/GAMM.201310004
[9]  
Gunasekar S., 2017, Advances in Neural Information Processing Systems
[10]   Tensor Decompositions and Applications [J].
Kolda, Tamara G. ;
Bader, Brett W. .
SIAM REVIEW, 2009, 51 (03) :455-500