Application of Nano Texturing on Multi-crystalline Silicon Solar Cells

被引:1
|
作者
Gou, Xianfang [1 ,2 ]
Li, Xiaoyan [1 ]
Wang, Shaoliang [3 ]
Huang, Junlin [2 ]
Yu, Jingwen [2 ]
Huang, Xixi [2 ]
Zhou, Su [2 ]
Huang, Qingsong [2 ]
Fan, Weitao [2 ]
机构
[1] Beijing Univ Technol, Beijing 100124, Peoples R China
[2] CECEP Solar Energy Technol Zhenjiang Co Ltd, Zhenjiang 212132, Peoples R China
[3] Beijing Jiaotong Univ, Beijing, Peoples R China
来源
MATERIALS SCIENCE-MEDZIAGOTYRA | 2018年 / 24卷 / 02期
基金
中国国家自然科学基金;
关键词
nano texturing; reactive ion etching; silicon; solar cell; MULTICRYSTALLINE SILICON; CONVERSION EFFICIENCY; IMPROVEMENT;
D O I
10.5755/j01.ms.24.2.17398
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nano texturing has been confirmed as an effective structure to improve the efficiency of multi-crystalline silicon solar cells by reducing optical loss. In this study, nano textured solar cells are fabricated by the Reactive Ion Etching (RIE) method based on a conventional production line. Several characterization methods are employed to evaluate the morphology, minority carrier lifetime, quantum efficiency and electricity performance of both nano textured and micro textured solar cells. The results show that nano textured solar cells have a maxiumum efficiency of 19.21 % and an average efficiency that is 0.57 % higher than that of micro textured solar cells. Thus, the ME method is an effective way to manufacture nano textured solar cells. It can demonstrably improve the photoelectric conversion efficiency of mass-produced solar cells and reduce the production cost, which is significant to the development of solar cell industry.
引用
收藏
页码:126 / 129
页数:4
相关论文
共 50 条
  • [31] SiNx deposited by in-line PECVD for multi-crystalline silicon solar cells
    Wei, MC
    Chang, SJ
    Tsia, CY
    Liu, CH
    Chen, SC
    SOLAR ENERGY, 2006, 80 (02) : 215 - 219
  • [32] Texturing Multi-Crystalline Silicon Wafer by Ultrasonic Standing Wave in Acid Etching
    Chao, Yan
    Wu, Liqun
    MICRO-NANO TECHNOLOGY XIV, PTS 1-4, 2013, 562-565 : 781 - 784
  • [33] Minority carrier diffusion lengths in multi-crystalline silicon wafers and solar cells
    Cavalcoli, D
    Cavallini, A
    Rossi, M
    Peter, K
    GETTERING AND DEFECT ENGINEERING IN SEMICONDUCTOR TECHNOLOGY, 2004, 95-96 : 205 - 210
  • [34] High-efficiency cell technologies for multi-crystalline silicon solar cells
    Nunoi, Tohru
    Shapu Giho/Sharp Technical Journal, 1998, (70): : 32 - 36
  • [35] Aluminum Nanoparticles Passivation of Multi-Crystalline Silicon Nanostructure for Solar Cells Applications
    Jemai, A. B.
    Mannai, A.
    Khezami, L.
    Mokraoui, S.
    Algethami, Faisal K.
    Al-Ghyamah, A.
    Ben Rabha, M.
    SILICON, 2020, 12 (11) : 2755 - 2760
  • [36] Investigation of surface features for 17.2% efficiency multi-crystalline silicon solar cells
    Park, Kwang Mook
    Lee, Myoung Bok
    Choi, Sie Young
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2015, 132 : 356 - 362
  • [37] Effect of temperature distribution on acid-etched texturing of multi-crystalline silicon
    Feng, S. (smfeng@sjtu.edu.cn), 1600, Chinese Optical Society (33):
  • [38] Aluminum Nanoparticles Passivation of Multi-Crystalline Silicon Nanostructure for Solar Cells Applications
    A. B. Jemai
    A. Mannai
    L. Khezami
    S. Mokraoui
    Faisal K. Algethami
    A. Al-Ghyamah
    M. Ben Rabha
    Silicon, 2020, 12 : 2755 - 2760
  • [39] The degradation of multi-crystalline silicon solar cells after damp heat tests
    Oh, Wonwook
    Kim, Seongtak
    Bae, Soohyun
    Park, Nochang
    Kang, Yoonmook
    Lee, Hae-Seok
    Kim, Donghwan
    MICROELECTRONICS RELIABILITY, 2014, 54 (9-10) : 2176 - 2179
  • [40] Texturing of large area multi-crystalline silicon wafers through different chemical approaches for solar cell fabrication
    Kim, Yunghae
    Dhungel, S. K.
    Jung, Sungwook
    Mangalaraj, D.
    Yi, J.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2008, 92 (08) : 960 - 968