ON THE DISTRIBUTION OF ARGUMENTS OF GAUSS SUMS

被引:3
作者
Shparlinski, Igor E. [1 ]
机构
[1] Macquarie Univ, Dept Comp, Sydney, NSW 2109, Australia
关键词
D O I
10.2996/kmj/1238594554
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F-q be a finite field of q elements of characteristic p. N. M. Katz and Z. Zheng have shown the uniformity of distribution of the arguments arg G(a,chi) of all (q - 1)(q - 2) nontrivial Gauss sums G(a, chi) =Sigma(x is an element of F4)chi(x) exp(2 pi i Tr(ax)/p). where chi is a non-principal Multiplicative character of the multiplicative group F-q* and Tr(z) is the trace of z is an element of F-q into F-p. Here we obtain a similar result for the set of arguments arg G(a,chi) when a and chi run through arbitrary (but sufficiently large) subsets A and X of F-q* and the set of all multiplicative characters of F-q* respectively.
引用
收藏
页码:172 / 177
页数:6
相关论文
共 5 条
[1]  
[Anonymous], 1974, PURE APPL MATH
[2]  
Drmota M., 1997, SEQUENCES DISCREPANC
[3]   The distribution of integers with a divisor in a given interval [J].
Ford, Kevin .
ANNALS OF MATHEMATICS, 2008, 168 (02) :367-433
[4]  
Iwaniec H., 2004, ANAL NUMBER THEORY
[5]  
Katz NM, 1996, PROG MATH, V139, P537