Formation of self-limited, stable and conductive interfaces between garnet electrolytes and lithium anodes for reversible lithium cycling in solid-state batteries

被引:216
|
作者
He, Minghui [1 ,2 ]
Cui, Zhonghui [1 ]
Chen, Cheng [1 ,2 ]
Li, Yiqiu [1 ]
Guo, Xiangxin [1 ,3 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100039, Peoples R China
[3] Qingdao Univ, Coll Phys, Qingdao 266071, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTROCHEMICAL PERFORMANCE; CUBIC LI7LA3ZR2O12; LI+ CONDUCTIVITY; STABILITY; CHALLENGES; IMPEDANCE; BEHAVIOR; NB;
D O I
10.1039/c8ta02276c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid-state batteries (SSBs) have already attracted significant attention due to their potential to offer high energy density and excellent safety as compared to the currently used lithium-ion batteries with liquid electrolytes. The use of a lithium anode in SSBs is extremely important to realize these advantages. Starting from the synthesis of a highly conductive cubic garnet solid electrolyte (Li6.375La3Zr1.375Nb0.625O12, LLZNO) using Nb as a structure stabilizer, in this study, we demonstrated the resolution of interfacial problems between the garnet electrolyte and lithium anode and the integration of the lithium anode into garnet-based SSBs by modifying the as-synthesized LLZNO with a Sn thin film. Due to the Sn modification, the interfacial resistances between the garnet electrolyte and the lithium anode decreased approximately 20 times to only 46.6 cm(2). The fast and reversible lithium plating/stripping under high current densities and the excellent battery performance of Li/Sn-LLZNO/LiFePO4 full cells were achieved. This improvement is ascribed to the formation of a Li-Sn alloy interlayer, which severs as a self-limited stable and conductive interface, bridging the garnet electrolyte and the lithium anode and enabling fast and stable lithium transport. As a proof-of-concept, this effective surface modification method will offer inspirations to researchers for overcoming the interfacial problems and promoting the development of high-performance SSBs.
引用
收藏
页码:11463 / 11470
页数:8
相关论文
共 50 条
  • [1] Polymer electrolytes and interfaces in solid-state lithium metal batteries
    Ding, Peipei
    Lin, Zhiyuan
    Guo, Xianwei
    Wu, Lingqiao
    Wang, Yongtao
    Guo, Hongxia
    Li, Liangliang
    Yu, Haijun
    MATERIALS TODAY, 2021, 51 : 449 - 474
  • [2] Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries
    Liu, Qi
    Geng, Zhen
    Han, Cuiping
    Fu, Yongzhu
    Li, Song
    He, Yan-bing
    Kang, Feiyu
    Li, Baohua
    JOURNAL OF POWER SOURCES, 2018, 389 : 120 - 134
  • [3] Garnet-type solid-state electrolytes and interfaces in all-solid-state lithium batteries: progress and perspective
    Huang, Jian
    Liang, Feng
    Hou, Minjie
    Zhang, Yingjie
    Chen, Kunfeng
    Xue, Dongfeng
    APPLIED MATERIALS TODAY, 2020, 20
  • [4] Sustainable Interfaces between Si Anodes and Garnet Electrolytes for Room-Temperature Solid-State Batteries
    Chen, Cheng
    Li, Quan
    Li, Yiqiu
    Cui, Zhonghui
    Guo, Xiangxin
    Li, Hong
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (02) : 2185 - 2190
  • [5] Interfaces in Solid-State Lithium Batteries
    Xu, Lin
    Tang, Shun
    Cheng, Yu
    Wang, Kangyan
    Liang, Jiyuan
    Liu, Cui
    Cao, Yuan-Cheng
    Wei, Feng
    Mai, Liqiang
    JOULE, 2018, 2 (10) : 1991 - 2015
  • [6] Revealing the Role of Liquid Electrolytes in Cycling of Garnet-Based Solid-State Lithium-Metal Batteries
    Yan, Shuo
    Abouali, Sara
    Yim, Chae-Ho
    Zhou, Jigang
    Wang, Jian
    Baranova, Elena A.
    Weck, Arnaud
    Thangadurai, Venkataraman
    Merati, Ali
    Abu-Lebdeh, Yaser
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (33): : 14027 - 14035
  • [7] Recent progress on flexible lithium metal batteries: Composite lithium metal anodes and solid-state electrolytes
    Wang, Shijian
    Xiong, Pan
    Zhang, Jinqiang
    Wang, Guoxiu
    ENERGY STORAGE MATERIALS, 2020, 29 : 310 - 331
  • [8] In situ construction of a multifunctional interlayer for garnet-type electrolytes to suppress lithium dendrite formation in solid-state lithium batteries
    Xiang, Xing
    Fang, Zecheng
    Du, Congkun
    Zhao, Zhenzhen
    Chen, Jiajia
    Zhang, Yanhua
    Bi, Siwen
    Wang, Huihu
    Yang, Haitao
    Chen, Yuan
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 965
  • [9] Ultrahigh Elastic Polymer Electrolytes for Solid-State Lithium Batteries with Robust Interfaces
    Zheng, Tianxiang
    Cui, Ximing
    Chu, Ying
    Li, Haijuan
    Pan, Qinmin
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (04) : 5932 - 5939
  • [10] Degradation of Lithium Iron Phosphate Sulfide Solid-State Batteries by Conductive Interfaces
    Sun, Kerry
    Cao, Chuntian
    Zhao, Dingyi
    Tong, Xiao
    Bak, Seong-Min
    Du, Yonghua
    Wang, Feng
    Steingart, Daniel A.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (39): : 19396 - 19405