On the space-time regularity of C(0, T; Ln) -: very weak solutions to the Navier-Stokes equations

被引:7
作者
Berselli, LC
Galdi, GP
机构
[1] Univ Pisa, Dipartimento Matemat U Dini, I-56126 Pisa, Italy
[2] Univ Pittsburgh, Dept Mech Engn, Pittsburgh, PA 15260 USA
关键词
Navier-Stokes equations; very weak solutions; regularity;
D O I
10.1016/j.na.2004.05.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the initial-boundary value problem for the Navier-Stokes equations in a domain Omega subset of or equal to R-n. We prove the space-time regularity of very weak solutions belonging to C(0, T; L-n(Omega)). In particular, we prove regularity for a class of solutions that are possibly not weak solutions in the sense of Leray-Hopf, (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:703 / 717
页数:15
相关论文
共 34 条
[1]  
Adams R., 1975, PURE APPL MATH, V65
[3]  
BREZIS H, 1979, J MATH PURE APPL, V58, P137
[4]   GLOBAL-SOLUTIONS OF 2-DIMENSIONAL NAVIER-STOKES AND EULER EQUATIONS - REMARKS [J].
BREZIS, H .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1994, 128 (04) :359-360
[5]  
CANNONE M, 2004, IN PRESS HDB MATH FL, V3
[6]  
Chemin JY, 1999, J ANAL MATH, V77, P27, DOI 10.1007/BF02791256
[7]  
DAVEIGA HB, 1987, INDIANA U MATH J, V36, P149
[8]  
Depauw N, 2001, REV MAT IBEROAM, V17, P21
[9]   L3,∞-solutions of the Navier-Stokes equations and backward uniqueness [J].
Escauriaza, L ;
Seregin, G ;
Sverák, V .
RUSSIAN MATHEMATICAL SURVEYS, 2003, 58 (02) :211-250
[10]   INITIAL VALUE-PROBLEM FOR NAVIER-STOKES EQUATIONS WITH DATA IN LP [J].
FABES, EB ;
JONES, BF ;
RIVIERE, NM .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1972, 45 (03) :222-&