Local Computation of Maximal Independent Set

被引:6
作者
Ghaffari, Mohsen [1 ]
机构
[1] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
来源
2022 IEEE 63RD ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS) | 2022年
基金
欧洲研究理事会;
关键词
sublinear algorithms; local computation algorithms; maximal independent set; APPROXIMATION; ALGORITHMS; TIME;
D O I
10.1109/FOCS54457.2022.00049
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present a randomized Local Computation Algorithm (LCA) with query complexity poly(Delta) center dot log n for the Maximal Independent Set (MIS) problem. That is, the algorithm determines whether each node is in the computed MIS or not using poly(Delta) center dot log n queries to the adjacency lists of the graph, with high probability, and this can be done for different nodes simultaneously and independently. Here Delta and n denote the maximum degree and the number of nodes. This algorithm resolves a key open problem in the study of local computations and sublinear algorithms (attributed to Rubinfeld).
引用
收藏
页码:438 / 449
页数:12
相关论文
共 21 条
[1]  
Alon Noga, 2012, P 23 ANN ACM SIAM S, P1132
[2]  
Behnezhad Soheil, 2021, P S FDN COMP SCI FOC
[3]  
Doerr Benjamin, 2018, ARXIV
[4]   Best of two local models: Centralized local and distributed local algorithms [J].
Even, Guy ;
Medina, Moti ;
Ron, Dana .
INFORMATION AND COMPUTATION, 2018, 262 :69-89
[5]  
Ghaffari M., 2016, P 27 ANN ACM SIAM S, P270
[6]  
Ghaffari M, 2021, Disc Algorithms, P2892
[7]  
Ghaffari M, 2019, Disc Algorithms, P1636
[8]  
Kapralov Michael, 2020, P 31 ANN ACMS S, P1753
[9]   Local Computation: Lower and Upper Bounds [J].
Kuhn, Fabian ;
Moscibroda, Thomas ;
Wattenhofer, Roger .
JOURNAL OF THE ACM, 2016, 63 (02)
[10]  
Levi R, 2017, BULL EUR ASSOC THEOR, P60