A Weighted Hermite Hadamard Inequality for Steffensen-Popoviciu and Hermite-Hadamard Weights on Time Scales

被引:0
作者
Dinu, Cristian [1 ]
机构
[1] Univ Craiova, Dept Math, RO-200585 Craiova, Romania
来源
ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA | 2009年 / 17卷 / 01期
关键词
Time scales; convex function; dynamic derivatives; Hermite-Hadamard inequality;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a weighted version of the Hermite-Hadamard inequality for convex functions on time scales, with weights that are allowed to take some negative values, these are the Steffensen-Popoviciu and the Hermite-Hadamard weights. We also present some applications of this inequality.
引用
收藏
页码:77 / 90
页数:14
相关论文
共 13 条
  • [1] Agarwal R. P., 1999, Results Math, V35, P3, DOI DOI 10.1007/BF03322019
  • [2] Ammi MRS, 2008, J INEQUAL APPL, DOI 10.1155/2008/576876
  • [3] Dinu C, 2007, ANN UNIV CRAIOVA-MAT, V34, P43
  • [4] Hermite-Hadamard inequality on time scales
    Dinu, Cristian
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2008, 2008 (1)
  • [5] Dragomir S. S., 2005, J INEQUAL PURE APPL, V6
  • [6] Florea A, 2007, B MATH SOC SCI MATH, V50, P149
  • [7] Hilger S., 1990, Result math, V18, P18, DOI [DOI 10.1007/BF03323153, 10.1007/BF03323153]
  • [8] Niculescu CP, 2006, CMS BOOKS MATH, P1
  • [9] Peterson, 2001, DYNAMIC EQUATIONS TI, DOI [DOI 10.1007/978-1-4612-0201-1, 10.1007/978-1-4612-0201-1]
  • [10] Popoviciu T., 1934, MATH CLUJ, V8, P1