Distribution of interpolation points

被引:9
作者
Grothmann, R
机构
[1] Katholische Univ. Eichstätt
来源
ARKIV FOR MATEMATIK | 1996年 / 34卷 / 01期
关键词
D O I
10.1007/BF02559510
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that interpolation to a function, analytic on a compact set E in the complex plane, can yield maximal convergence only if a subsequence of the interpolation points converges to the equilibrium distribution on E in the weak sense. Furthermore, we will derive a converse theorem for the case when the measure associated with the interpolation points converges to a measure on E, which may be different from the equilibrium measure.
引用
收藏
页码:103 / 117
页数:15
相关论文
共 13 条
[1]   ON THE DISTRIBUTION OF SIMPLE ZEROS OF POLYNOMIALS [J].
BLATT, HP .
JOURNAL OF APPROXIMATION THEORY, 1992, 69 (03) :250-268
[2]  
BLATT HP, 1995, COMPUTATIONAL METHOD, P75
[3]  
Carleson L., 1964, MATH SCAND, V15, P167
[4]  
DENY J, 1950, ANN I FOURIER GRENOB, V1, P103
[6]  
KADEC MI, 1960, T AM MATH SOC, V26, P231
[7]  
Krylov V.I., 2006, APPROXIMATE CALCULAT
[8]   INTERPOLATORY PROPERTIES OF BEST L2-APPROXIMANTS [J].
SAFF, EB ;
SHEKHTMAN, B .
INDAGATIONES MATHEMATICAE-NEW SERIES, 1990, 1 (04) :489-498
[9]  
Tsuji M, 1975, POTENTIAL THEORY MOD
[10]  
WALLIN H, 1984, LECT NOTES MATH, V1105, P272