Thermal Metamaterials for Heat Flow Control in Electronics

被引:49
作者
Dede, Ercan M. [1 ]
Zhou, Feng [1 ]
Schmalenberg, Paul [1 ]
Nomura, Tsuyoshi [1 ]
机构
[1] Toyota Res Inst North Amer, Elect Res Dept, 1555 Woodridge Ave, Ann Arbor, MI 48105 USA
关键词
CONDUCTIVITY; OPTIMIZATION; CLOAKING; DESIGN; FLUX; NANOSCALE; TRANSPORT; COMPOSITE; GEOMETRY;
D O I
10.1115/1.4039020
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Rapid advancement of modern electronics has pushed the limits of traditional thermal management techniques. Novel approaches to the manipulation of the flow of heat in electronic systems have potential to open new design spaces. Here, the field of thermal metamaterials as it applies to electronics is briefly reviewed. Recent research and development of thermal metamaterial systems with anisotropic thermal conductivity for the manipulation of heat flow in ultra-thin composites is explained. An explanation of fundamental experimental studies on heat flow control using standard printed circuit board (PCB) technology follows. From this, basic building blocks for heat flux cloaking, focusing, and reversal are reviewed, and their extension to a variety of electronics applications is emphasized. While device temperature control, thermal energy harvesting, and electrothermal circuit design are the primary focus, some discussion on the extension of thermal guiding (TG) structures to device-scale applications is provided. In total, a holistic view is offered of the myriad of possible applications of thermal metamaterials to heat flow control in future electronics.
引用
收藏
页数:10
相关论文
共 54 条
[11]   Thermal-composite design optimization for heat flux shielding, focusing, and reversal [J].
Dede, Ercan M. ;
Nomura, Tsuyoshi ;
Lee, Jaewook .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2014, 49 (01) :59-68
[12]   Heat flux cloaking, focusing, and reversal in ultra-thin composites considering conduction-convection effects [J].
Dede, Ercan M. ;
Nomura, Tsuyoshi ;
Schmalenberg, Paul ;
Lee, Jae Seung .
APPLIED PHYSICS LETTERS, 2013, 103 (06)
[13]   Simulation and optimization of heat flow via anisotropic material thermal conductivity [J].
Dede, Ercan M. .
COMPUTATIONAL MATERIALS SCIENCE, 2010, 50 (02) :510-515
[14]   Shaped graded materials with an apparent negative thermal conductivity [J].
Fan, C. Z. ;
Gao, Y. ;
Huang, J. P. .
APPLIED PHYSICS LETTERS, 2008, 92 (25)
[15]   Thermal invisibility based on scattering cancellation and mantle cloaking [J].
Farhat, M. ;
Chen, P. -Y. ;
Bagci, H. ;
Amra, C. ;
Guenneau, S. ;
Alu, A. .
SCIENTIFIC REPORTS, 2015, 5
[16]   Anisotropic conductivity rotates heat fluxes in transient regimes [J].
Guenneau, Sebastien ;
Amra, Claude .
OPTICS EXPRESS, 2013, 21 (05) :6578-6583
[17]   Transformation thermodynamics: cloaking and concentrating heat flux [J].
Guenneau, Sebastien ;
Amra, Claude ;
Veynante, Denis .
OPTICS EXPRESS, 2012, 20 (07) :8207-8218
[18]   Functionalization mediates heat transport in graphene nanoflakes [J].
Han, Haoxue ;
Zhang, Yong ;
Wang, Nan ;
Samani, Majid Kabiri ;
Ni, Yuxiang ;
Mijbil, Zainelabideen Y. ;
Edwards, Michael ;
Xiong, Shiyun ;
Saaskilahti, Kimmo ;
Murugesan, Murali ;
Fu, Yifeng ;
Ye, Lilei ;
Sadeghi, Hatef ;
Bailey, Steven ;
Kosevich, Yuriy A. ;
Lambert, Colin J. ;
Liu, Johan ;
Volz, Sebastian .
NATURE COMMUNICATIONS, 2016, 7
[19]   Manipulating Steady Heat Conduction by Sensu-shaped Thermal Metamaterials [J].
Han, Tiancheng ;
Bai, Xue ;
Liu, Dan ;
Gao, Dongliang ;
Li, Baowen ;
Thong, John T. L. ;
Qiu, Cheng-Wei .
SCIENTIFIC REPORTS, 2015, 5
[20]   Full Control and Manipulation of Heat Signatures: Cloaking, Camouflage and Thermal Metamaterials [J].
Han, Tiancheng ;
Bai, Xue ;
Thong, John T. L. ;
Li, Baowen ;
Qiu, Cheng-Wei .
ADVANCED MATERIALS, 2014, 26 (11) :1731-1734