Asymptotics for L1-estimators of regression parameters under heteroscedasticity

被引:22
作者
Knight, K [1 ]
机构
[1] Univ Toronto, Dept Stat, Toronto, ON M5S 3G3, Canada
来源
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE | 1999年 / 27卷 / 03期
关键词
linear regression; L-1-estimation; heteroscedasticity; asymptotic distribution; bootstrap;
D O I
10.2307/3316107
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the asymptotic behaviour of L-1-estimators in a linear regression under a very general form of heteroscedasticity. The limiting distributions of the estimators are derived under standard conditions on the design. We also consider the asymptotic behaviour of the bootstrap in the heteroscedastic model and show that it is consistent to first order only if the limiting distribution is normal.
引用
收藏
页码:497 / 507
页数:11
相关论文
共 27 条
[1]  
BAI ZD, 1990, CHINESE SCI A, V33, P449
[2]   ASYMPTOTIC THEORY OF LEAST ABSOLUTE ERROR REGRESSION [J].
BASSETT, G ;
KOENKER, R .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1978, 73 (363) :618-622
[3]   SOME ASYMPTOTIC THEORY FOR THE BOOTSTRAP [J].
BICKEL, PJ ;
FREEDMAN, DA .
ANNALS OF STATISTICS, 1981, 9 (06) :1196-1217
[4]  
Bloomfield P., 1983, LEAST ABSOLUTE DEVIA
[5]  
DEANGELIS D, 1993, J AM STAT ASSOC, V88, P1310
[6]  
ELBANTLI F, 1998, 19982 ISP ISRO U LIB
[7]  
Feller W., 1991, An Introduction to Probability Theory and Its Applications, VII
[8]  
GEYER CJ, 1996, UNPUB ASYMPTOTICS CO
[9]   REGRESSION RANK SCORES AND REGRESSION QUANTILES [J].
GUTENBRUNNER, C ;
JURECKOVA, J .
ANNALS OF STATISTICS, 1992, 20 (01) :305-330
[10]   EXACT CONVERGENCE RATE OF BOOTSTRAP QUANTILE VARIANCE ESTIMATOR [J].
HALL, P ;
MARTIN, MA .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 80 (02) :261-268