Simplicial mesh of an arbitrary polyhedron

被引:1
作者
George, PL
Borouchaki, H
机构
[1] Inst Natl Rech Informat & Automat, Projet Gamma, F-78153 Le Chesnay, France
[2] Univ Technol Troyes, LASMIS, GSM, F-10010 Troyes, France
关键词
D O I
10.1016/j.crma.2003.12.033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Issues related to the existence of a triangulation of an arbitrary polyhedron are addressed. Given a boundary surface mesh (a set of triangular facets), the problem to decide whether or not a triangulation (with no internal points apart from the Steiner points) exists is reported to be NP-hard. In this paper, an algorithm to triangulate a general polyhedron is used which makes use of a classical Delaunay triangulation algorithm, a phase for recovering the missing boundary facets by means of facet partitioning and a final phase that makes it possible to remove the additional (non-Steiner) points previously defined so as to recover the initial boundary mesh thus resulting in a mesh of the given polyhedron. (C) 2004 Academie des sciences. Publie par Elsevier SAS. Tous droits reserves.
引用
收藏
页码:735 / 740
页数:6
相关论文
共 14 条
[1]  
Boissonnat J.-D., 1995, GEOMETRIE ALGORITHMI
[2]  
BOROUCHAKI H, 2000, 7 INT C NUM GRID GEN, P303
[3]   CONVEX PARTITIONS OF POLYHEDRA - A LOWER BOUND AND WORST-CASE OPTIMAL ALGORITHM [J].
CHAZELLE, B .
SIAM JOURNAL ON COMPUTING, 1984, 13 (03) :488-507
[4]   TRIANGULATING A NONCONVEX POLYTOPE [J].
CHAZELLE, B ;
PALIOS, L .
DISCRETE & COMPUTATIONAL GEOMETRY, 1990, 5 (05) :505-526
[5]   TRIANGULATING A SIMPLE POLYGON IN LINEAR TIME [J].
CHAZELLE, B .
DISCRETE & COMPUTATIONAL GEOMETRY, 1991, 6 (05) :485-524
[6]   AUTOMATIC MESH GENERATOR WITH SPECIFIED BOUNDARY [J].
GEORGE, PL ;
HECHT, F ;
SALTEL, E .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1991, 92 (03) :269-288
[7]  
GEORGE PL, 2002, RR4398 INRIA
[8]   APPROXIMATING CONSTRAINED TETRAHEDRIZATIONS [J].
HAZLEWOOD, C .
COMPUTER AIDED GEOMETRIC DESIGN, 1993, 10 (01) :67-87
[9]  
Murphy M, 2000, PROCEEDINGS OF THE ELEVENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P67
[10]  
PEBAY PP, 2000, THESIS U P M CURIE P