RESPEC Incorporates Residue Specificity and the Ligand Effect into the Elastic Network Model

被引:14
作者
Kaynak, Burak T. [1 ]
Findik, Doga [2 ,3 ]
Doruker, Pemra [2 ,3 ]
机构
[1] Bogazici Univ, Dept Phys, TR-34342 Istanbul, Turkey
[2] Bogazici Univ, Dept Chem Engn, TR-34342 Istanbul, Turkey
[3] Bogazici Univ, Polymer Res Ctr, TR-34342 Istanbul, Turkey
关键词
MOLECULAR-DYNAMICS; TRYPSIN-INHIBITOR; SINGLE-PARAMETER; GLOBAL DYNAMICS; PROTEINS; MOTIONS; BINDING; STATE; FLUCTUATIONS; INTERFACE;
D O I
10.1021/acs.jpcb.7b10325
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
RESPEC is a new framework that introduces residue specificity into elastic network modeling (ENM) to successfully render intact protein-ligand complexes as well as apo proteins. This framework establishes a broader application of coarse-graining idea via describing (i) a coarse-grained residue/node through its heavy atoms as virtual nodes, (ii) an effective B-factor for such a node, directly obtained from the experimental data, and (iii) a node-node interaction by a cumulative distance-dependent force constant. RESPEC improves the level of correlations with B-factors after optimizing the parameters of the model. In the absence of ligands, the mean correlations exceed 0.72, which is higher than the classical ENM results, based on a diverse set of proteins. Global modes satisfactorily describe the conformational transitions for apo structures. When the ligands are included at atomistic resolution in RESPEC calculations, mean correlation values exceed 0.9 over the same data set.
引用
收藏
页码:5347 / 5355
页数:9
相关论文
共 39 条
[1]   Anisotropy of fluctuation dynamics of proteins with an elastic network model [J].
Atilgan, AR ;
Durell, SR ;
Jernigan, RL ;
Demirel, MC ;
Keskin, O ;
Bahar, I .
BIOPHYSICAL JOURNAL, 2001, 80 (01) :505-515
[2]   Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential [J].
Bahar, I ;
Atilgan, AR ;
Erman, B .
FOLDING & DESIGN, 1997, 2 (03) :173-181
[3]   Global Dynamics of Proteins: Bridging Between Structure and Function [J].
Bahar, Ivet ;
Lezon, Timothy R. ;
Yang, Lee-Wei ;
Eyal, Eran .
ANNUAL REVIEW OF BIOPHYSICS, VOL 39, 2010, 39 :23-42
[4]   Normal Mode Analysis of Biomolecular Structures: Functional Mechanisms of Membrane Proteins [J].
Bahar, Ivet ;
Lezon, Timothy R. ;
Bakan, Ahmet ;
Shrivastava, Indira H. .
CHEMICAL REVIEWS, 2010, 110 (03) :1463-1497
[5]   The intrinsic dynamics of enzymes plays a dominant role in determining the structural changes induced upon inhibitor binding [J].
Bakan, Ahmet ;
Bahar, Ivet .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (34) :14349-14354
[6]   The worldwide Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data [J].
Berman, Helen ;
Henrick, Kim ;
Nakamura, Haruki ;
Markley, John L. .
NUCLEIC ACIDS RESEARCH, 2007, 35 :D301-D303
[7]   HARMONIC DYNAMICS OF PROTEINS - NORMAL-MODES AND FLUCTUATIONS IN BOVINE PANCREATIC TRYPSIN-INHIBITOR [J].
BROOKS, B ;
KARPLUS, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1983, 80 (21) :6571-6575
[8]   Convergent dynamics in the protease enzymatic superfamily [J].
Carnevale, Vincenzo ;
Raugei, Simone ;
Micheletti, Cristian ;
Carloni, Paolo .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (30) :9766-9772
[9]  
Doruker P, 2000, PROTEINS, V40, P512, DOI 10.1002/1097-0134(20000815)40:3<512::AID-PROT180>3.0.CO
[10]  
2-M