Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.)

被引:348
|
作者
Varshney, Rajeev K. [1 ,2 ]
Thudi, Mahendar [1 ]
Nayak, Spurthi N. [1 ]
Gaur, Pooran M. [1 ]
Kashiwagi, Junichi [3 ]
Krishnamurthy, Lakshmanan [1 ]
Jaganathan, Deepa [1 ]
Koppolu, Jahnavi [1 ]
Bohra, Abhishek [1 ]
Tripathi, Shailesh [1 ]
Rathore, Abhishek [1 ]
Jukanti, Aravind K. [1 ]
Jayalakshmi, Veera [4 ]
Vemula, Anilkumar [1 ]
Singh, S. J. [5 ]
Yasin, Mohammad [6 ]
Sheshshayee, M. S. [7 ]
Viswanatha, K. P. [7 ]
机构
[1] Int Crops Res Inst Semi Arid Trop, Hyderabad, Andhra Pradesh, India
[2] CIMMYT, CGIAR Generat Challenge Programme, Mexico City 06600, DF, Mexico
[3] Hokkaido Univ, Sapporo, Hokkaido, Japan
[4] ANGRAU Reg Agr Res Stn, Nandyal, India
[5] RAU Agr Res Stn, Durgapur, India
[6] RAK Coll Agr, Sehore, India
[7] Univ Agr Sci Bangalore, Bangalore, Karnataka, India
关键词
AVOIDANCE ROOT TRAITS; MICROSATELLITE MARKERS; DIVERSITY ASSESSMENT; HARVEST INDEX; LINKAGE MAP; SEED YIELD; VARIABILITY; GENOMICS; COLLECTION; DISCOVERY;
D O I
10.1007/s00122-013-2230-6
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Key message Analysis of phenotypic data for 20 drought tolerance traits in 1-7 seasons at 1-5 locations together with genetic mapping data for two mapping populations provided 9 QTL clusters of which one present on CaLG04 has a high potential to enhance drought tolerance in chickpea improvement. Chickpea (Cicer arietinum L.) is the second most important grain legume cultivated by resource poor farmers in the arid and semi-arid regions of the world. Drought is one of the major constraints leading up to 50 % production losses in chickpea. In order to dissect the complex nature of drought tolerance and to use genomics tools for enhancing yield of chickpea under drought conditions, two mapping populations-ICCRIL03 (ICC 4958 x ICC 1882) and ICCRIL04 (ICC 283 x ICC 8261) segregating for drought tolerance-related root traits were phenotyped for a total of 20 drought component traits in 1-7 seasons at 1-5 locations in India. Individual genetic maps comprising 241 loci and 168 loci for ICCRIL03 and ICCRIL04, respectively, and a consensus genetic map comprising 352 loci were constructed (http://cmap.icrisat.ac.in/cmap/sm/cp/varshney/.). Analysis of extensive genotypic and precise phenotypic data revealed 45 robust main-effect QTLs (M-QTLs) explaining up to 58.20 % phenotypic variation and 973 epistatic QTLs (E-QTLs) explaining up to 92.19 % phenotypic variation for several target traits. Nine QTL clusters containing QTLs for several drought tolerance traits have been identified that can be targeted for molecular breeding. Among these clusters, one cluster harboring 48 % robust M-QTLs for 12 traits and explaining about 58.20 % phenotypic variation present on CaLG04 has been referred as "QTL-hotspot". This genomic region contains seven SSR markers (ICCM0249, NCPGR127, TAA170, NCPGR21, TR11, GA24 and STMS11). Introgression of this region into elite cultivars is expected to enhance drought tolerance in chickpea.
引用
收藏
页码:445 / 462
页数:18
相关论文
共 50 条
  • [1] Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.)
    Rajeev K. Varshney
    Mahendar Thudi
    Spurthi N. Nayak
    Pooran M. Gaur
    Junichi Kashiwagi
    Lakshmanan Krishnamurthy
    Deepa Jaganathan
    Jahnavi Koppolu
    Abhishek Bohra
    Shailesh Tripathi
    Abhishek Rathore
    Aravind K. Jukanti
    Veera Jayalakshmi
    Anilkumar Vemula
    S. J. Singh
    Mohammad Yasin
    M. S. Sheshshayee
    K. P. Viswanatha
    Theoretical and Applied Genetics, 2014, 127 : 445 - 462
  • [2] Genetic mapping of QTLs for drought tolerance in chickpea (Cicer arietinum L.)
    Kushwah, Ashutosh
    Bhatia, Dharminder
    Barmukh, Rutwik
    Singh, Inderjit
    Singh, Gurpreet
    Bindra, Shayla
    Vij, Suruchi
    Chellapilla, Bharadwaj
    Pratap, Aditya
    Roorkiwal, Manish
    Kumar, Shiv
    Varshney, Rajeev K.
    Singh, Sarvjeet
    FRONTIERS IN GENETICS, 2022, 13
  • [3] Sources of tolerance to terminal drought in the chickpea (Cicer arietinum L.) minicore germplasm
    Krishnamurthy, L.
    Kashiwagi, J.
    Gaur, P. M.
    Upadhyaya, H. D.
    Vadez, V.
    FIELD CROPS RESEARCH, 2010, 119 (2-3) : 322 - 330
  • [4] Breeding for improved drought tolerance in Chickpea (Cicer arietinum L.)
    Maqbool, Muhammad Amir
    Aslam, Muhammad
    Ali, Hina
    PLANT BREEDING, 2017, 136 (03) : 300 - 318
  • [5] Shoot traits and their relevance in terminal drought tolerance of chickpea (Cicer arietinum L.)
    Purushothaman, Ramamoorthy
    Krishnamurthy, Lakshmanan
    Upadhyaya, Hari Deo
    Vadez, Vincent
    Varshney, Rajeev Kumar
    FIELD CROPS RESEARCH, 2016, 197 : 10 - 27
  • [6] Cross-tolerance for drought, heat and salinity stresses in chickpea (Cicer arietinum L.)
    Pushpavalli, Raju
    Berger, Jens D.
    Turner, Neil C.
    Siddique, Kadambot H. M.
    Colmer, Timothy D.
    Vadez, Vincent
    JOURNAL OF AGRONOMY AND CROP SCIENCE, 2020, 206 (03) : 405 - 419
  • [7] SELECTION OF PROMISING CHICKPEA (CICER ARIETINUM L.) GENOTYPES USING DROUGHT TOLERANCE INDICES
    Naveed, M.
    Nadeem, M.
    Shafiq, M.
    Rafiq, C. M.
    Zahid, M. A.
    JOURNAL OF ANIMAL AND PLANT SCIENCES, 2019, 29 (01) : 278 - 290
  • [8] Zinc finger knuckle genes are associated with tolerance to drought and dehydration in chickpea (Cicer arietinum L.)
    Khassanova, Gulmira
    Oshergina, Irina
    Ten, Evgeniy
    Jatayev, Satyvaldy
    Zhanbyrshina, Nursaule
    Gabdola, Ademi
    Gupta, Narendra K.
    Schramm, Carly
    Pupulin, Antonio
    Philp-Dutton, Lauren
    Anderson, Peter
    Sweetman, Crystal
    Jenkins, Colin L. D.
    Soole, Kathleen L.
    Shavrukov, Yuri
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [9] Integrated physical, genetic and genome map of chickpea (Cicer arietinum L.)
    Varshney, Rajeev K.
    Mir, Reyazul Rouf
    Bhatia, Sabhyata
    Thudi, Mahendar
    Hu, Yuqin
    Azam, Sarwar
    Zhang, Yong
    Jaganathan, Deepa
    You, Frank M.
    Gao, Jinliang
    Riera-Lizarazu, Oscar
    Luo, Ming-Cheng
    FUNCTIONAL & INTEGRATIVE GENOMICS, 2014, 14 (01) : 59 - 73
  • [10] Prioritization of Microsatellite Markers Linked with Drought Tolerance Associated Traits in Chickpea (Cicer arietinum L.)
    Tiwari, Prakash N.
    Tiwari, Sharad
    Sapre, Swapnil
    Babbar, Anita
    Tripathi, Niraj
    Tiwari, Sushma
    Tripathi, Manoj Kumar
    LEGUME RESEARCH, 2023, 46 (11) : 1422 - 1430