Edge-reflection phase directed plasmonic resonances on graphene nano-structures

被引:30
作者
Du, Luping [1 ]
Tang, Dingyuan [1 ]
Yuan, Xiaocong [2 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[2] Shenzhen Univ, Key Lab Optoelect Devices & Syst, Inst Micro & Nano Opt, Minist Educ & Guangdong Prov,Coll Optoelect Engn, Shenzhen 518060, Peoples R China
来源
OPTICS EXPRESS | 2014年 / 22卷 / 19期
基金
中国国家自然科学基金;
关键词
ENHANCED RAMAN-SCATTERING; WAVE-GUIDES; NANOPARTICLES; CIRCUITS; DEVICES;
D O I
10.1364/OE.22.022689
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The phase of graphene plasmon upon edge-reflection plays a crucial role on determining the spectral properties of graphene structures. In this article, by using the full-wave simulation, we demonstrate that the mid-infrared graphene plasmons are nearly totally reflected at the boundary together with a phase jump of approximately 0.27 pi, regardless of the environments surrounding it. Appling this phase pickup, a Fabry-Perot model is formulated that can predict accurately the resonant wavelengths of graphene nano-ribbons. Furthermore, we find that the magnitude of the phase jump will either increase or reduce when two neighboring coplanar graphene sheets couple with each other. This could be used to explain the red-shift of resonant wavelength of periodic ribbon arrays with respect to an isolated ribbon. We provide a straightforward way to uncover the phase jump of graphene plasmons that would be helpful for designing and engineering graphene resonators and waveguides as well as their associated applications. (C) 2014 Optical Society of America
引用
收藏
页码:22689 / 22698
页数:10
相关论文
共 43 条
  • [11] Manipulating propagating graphene plasmons at near field by shaped graphene nano-vacancies
    Du, Luping
    Tang, Dingyuan
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2014, 31 (04) : 691 - 695
  • [12] Tightly Focused Radially Polarized Beam for Propagating Surface Plasmon-Assisted Gap-Mode Raman Spectroscopy
    Du, Luping
    Yuan, Guanghui
    Tang, Dingyuan
    Yuan, Xiaocong
    [J]. PLASMONICS, 2011, 6 (04) : 651 - 657
  • [13] Sub-diffraction-limited optical imaging with a silver superlens
    Fang, N
    Lee, H
    Sun, C
    Zhang, X
    [J]. SCIENCE, 2005, 308 (5721) : 534 - 537
  • [14] Gate-tuning of graphene plasmons revealed by infrared nano-imaging
    Fei, Z.
    Rodin, A. S.
    Andreev, G. O.
    Bao, W.
    McLeod, A. S.
    Wagner, M.
    Zhang, L. M.
    Zhao, Z.
    Thiemens, M.
    Dominguez, G.
    Fogler, M. M.
    Castro Neto, A. H.
    Lau, C. N.
    Keilmann, F.
    Basov, D. N.
    [J]. NATURE, 2012, 487 (7405) : 82 - 85
  • [15] Graphene Plasmonics: Challenges and Opportunities
    Garcia de Abajo, F. Javier
    [J]. ACS PHOTONICS, 2014, 1 (03): : 135 - 152
  • [16] The rise of graphene
    Geim, A. K.
    Novoselov, K. S.
    [J]. NATURE MATERIALS, 2007, 6 (03) : 183 - 191
  • [17] Light in a subwavelength slit in a metal: Propagation and reflection
    Gordon, R
    [J]. PHYSICAL REVIEW B, 2006, 73 (15)
  • [18] Grigorenko AN, 2012, NAT PHOTONICS, V6, P749, DOI [10.1038/NPHOTON.2012.262, 10.1038/nphoton.2012.262]
  • [19] Electromagnetic fields around silver nanoparticles and dimers
    Hao, E
    Schatz, GC
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (01) : 357 - 366
  • [20] Surface plasmon resonance sensors: review
    Homola, J
    Yee, SS
    Gauglitz, G
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 1999, 54 (1-2) : 3 - 15