Analysis of the Dynamics of Piecewise Linear Memristors

被引:0
作者
Jiang, Fangfang [1 ,2 ]
Ji, Zhicheng [3 ]
Wang, Qing-Guo [4 ]
Sun, Jitao [2 ]
机构
[1] Jiangnan Univ, Sch Sci, Wuxi 214122, Peoples R China
[2] Tongji Univ, Dept Math, Shanghai 200092, Peoples R China
[3] Jiangnan Univ, Sch IoT Engn, Wuxi 214122, Peoples R China
[4] Univ Johannesburg, Inst Intelligent Syst, Johannesburg, South Africa
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2016年 / 26卷 / 13期
基金
中国国家自然科学基金;
关键词
Memristor; piecewise linear; crossing limit cycle; periodic orbit; existence; uniqueness; BIFURCATION;
D O I
10.1142/S0218127416502175
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider a class of flux controlled memristive circuits with a piecewise linear memristor (i.e. the characteristic curve of the memristor is given by a piecewise linear function). The mathematical model is described by a discontinuous planar piecewise smooth differential system, which is defined on three zones separated by two parallel straight lines vertical bar x vertical bar = 1 (called as discontinuity lines in discontinuous differential systems). We first investigate the stability of equilibrium points and the existence and uniqueness of a crossing limit cycle for the memristor-based circuit under self-excited oscillation. We then analyze the existence of periodic orbits of forced nonlinear oscillation for the memristive circuit with an external exciting source. Finally, we give numerical simulations to show good matches between our theoretical and simulation results.
引用
收藏
页数:12
相关论文
共 23 条
  • [11] Periodic solutions and homoclinic bifurcation of a predator-prey system with two types of harvesting
    Huang, Mingzhan
    Liu, Shouzong
    Song, Xinyu
    Chen, Lansun
    [J]. NONLINEAR DYNAMICS, 2013, 73 (1-2) : 815 - 826
  • [12] MEMRISTOR OSCILLATORS
    Itoh, Makoto
    Chua, Leon O.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (11): : 3183 - 3206
  • [13] Existence and Uniqueness of Limit Cycle in Discontinuous Planar Differential Systems
    Jiang, Fangfang
    Sun, Jitao
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2016, 15 (01) : 67 - 80
  • [14] Memristor Based van der Pol Oscillation Circuit
    Lu, Yimin
    Huang, Xianfeng
    He, Shaobin
    Wang, Dongdong
    Zhang, Bo
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (12):
  • [15] SIMPLEST CHAOTIC CIRCUIT
    Muthuswamy, Bharathwaj
    Chua, Leon O.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (05): : 1567 - 1580
  • [16] IMPLEMENTING MEMRISTOR BASED CHAOTIC CIRCUITS
    Muthuswamy, Bharathwaj
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (05): : 1335 - 1350
  • [17] Bifurcation analysis of a piecewise-linear impact oscillator with drift
    Paez Chavez, Joseph
    Pavlovskaia, Ekaterina
    Wiercigroch, Marian
    [J]. NONLINEAR DYNAMICS, 2014, 77 (1-2) : 213 - 227
  • [18] Stability and non-standard finite difference method of the generalized Chua's circuit
    Radwan, A. G.
    Moaddy, K.
    Momani, Shaher
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) : 961 - 970
  • [19] Bifurcations Leading to Nonlinear Oscillations in a 3D Piecewise Linear Memristor Oscillator
    Scarabello, Marluce da Cruz
    Messias, Marcelo
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (01):
  • [20] The missing memristor found
    Strukov, Dmitri B.
    Snider, Gregory S.
    Stewart, Duncan R.
    Williams, R. Stanley
    [J]. NATURE, 2008, 453 (7191) : 80 - 83