Finite group schemes over bases with low ramification

被引:21
作者
Conrad, B [1 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
关键词
group scheme; Dieudonne module; Fontaine;
D O I
10.1023/A:1001788509055
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A' be a complete characteristic (0, p) discrete valuation ring with absolute ramification degree e and a perfect residue field. We are interested in studying the category F F-A' of finite flat commutative group schemes over A' with p-power order. When e = 1, Fontaine formulated the purely `linear algebra' notion of a finite Honda system over A' and constructed an anti-equivalence of categories between F F-A' and the category of finite Honda systems over A' when p > 2. We generalize this theory to the case e less than or equal to p - 1.
引用
收藏
页码:239 / 320
页数:82
相关论文
共 19 条
[1]  
Bosch, 1980, NERON MODELS
[2]  
BREUIL C, SCHEMAS GROUPES ANNE
[3]  
BREUIL C, UNPUB MODULARITY ELL
[4]   Modularity of certain potentially Barsotti-Tate Galois representations [J].
Conrad, B ;
Diamond, F ;
Taylor, R .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (02) :521-567
[5]   Ramified deformation problems [J].
Conrad, B .
DUKE MATHEMATICAL JOURNAL, 1999, 97 (03) :439-513
[6]   On deformation rings and Hecke rings [J].
Diamond, F .
ANNALS OF MATHEMATICS, 1996, 144 (01) :137-166
[7]  
Fontaine J.-M., 1977, GROUPES DIVISIBLES C
[8]  
FONTAINE JM, 1975, CR ACAD SCI A MATH, V280, P1423
[9]  
FONTAINE JM, 1982, ANN SCI ECOLE NORM S, V15, P547
[10]  
FONTAINE JM, 1995, C ELL CURV MOD FORMS