Nitrogen doped graphene anchored cobalt oxides efficiently bi-functionally catalyze both oxygen reduction reaction and oxygen revolution reaction

被引:55
作者
Wang, Qing [1 ]
Hu, Wenhui [1 ]
Huang, Yongmin [1 ]
机构
[1] East China Univ Sci & Technol, Sch Chem & Mol Engn, Key Lab Specially Funct Polymer Mat & Related Tec, Minist Educ, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
Nitrogen doped graphene; Cobalt oxides; Oxygen reduction reaction; Oxygen evolution reaction; Synergistic effect; METAL-OXIDES; CARBON; NANOPARTICLES; WATER; ELECTROCATALYST; COMPOSITE;
D O I
10.1016/j.ijhydene.2017.02.038
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A series of efficient bifunctional electrocatalyst composed of nitrogen-doped graphene-cobalt oxide nanoparticles nano-hybrids (Co-N/G) are fabricated by one-pot hydrothermal synthesis, which involves in-situ growth of cobalt oxides nanocrystals and nitrogen doping into graphene. 2, 4, 6-Triaminopyrimidine used as nitrogen precursor could anchor cobalt oxides nanoparticles on graphene oxide as active centers for oxygen electrode reactions. The TEM, Raman, XRD and XPS confirm the germination of nitrogen doped graphene and nano-sized cobalt oxides. The optimized Co-N/G catalyst consists of the highest contents of pyridinic nitrogen and CoO, which efficiently catalyze both ORR and OER. The strong coupling between cobalt oxides and N-graphene endows Co-N/G 600 with a low reversible overvoltage of 0.96 V between ORR and OER in alkaline medium, which is superior to novel catalysts such as Pt/C (1.24 V), IrO2 (1.43 V) and RuO2 (1.35 V), rendering it bi-catalyst efficient and economical for reversible oxygen electrode reactions. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:5899 / 5907
页数:9
相关论文
共 39 条
[1]   Co@Co3O4 Encapsulated in Carbon Nanotube-Grafted Nitrogen-Doped Carbon Polyhedra as an Advanced Bifunctional Oxygen Electrode [J].
Aijaz, Arshad ;
Masa, Justus ;
Roesler, Christoph ;
Xia, Wei ;
Weide, Philipp ;
Botz, Alexander J. R. ;
Fischer, Roland A. ;
Schuhmann, Wolfgang ;
Muhler, Martin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (12) :4087-4091
[2]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[3]   Facile Single-Step Synthesis of Nitrogen-Doped Reduced Graphene Oxide-Mn3O4 Hybrid Functional Material for the Electrocatalytic Reduction of Oxygen [J].
Bag, Sourav ;
Roy, Kanak ;
Gopinath, Chinnakonda S. ;
Raj, C. Retna .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (04) :2692-2699
[4]   ARTIFICIAL PHOTOSYNTHESIS - SOLAR SPLITTING OF WATER TO HYDROGEN AND OXYGEN [J].
BARD, AJ ;
FOX, MA .
ACCOUNTS OF CHEMICAL RESEARCH, 1995, 28 (03) :141-145
[5]   A class of non-precious metal composite catalysts for fuel cells [J].
Bashyam, Rajesh ;
Zelenay, Piotr .
NATURE, 2006, 443 (7107) :63-66
[6]   A CoFe2O4/graphene nanohybrid as an efficient bi-functional electrocatalyst for oxygen reduction and oxygen evolution [J].
Bian, Weiyong ;
Yang, Zhenrong ;
Strasser, Peter ;
Yang, Ruizhi .
JOURNAL OF POWER SOURCES, 2014, 250 :196-203
[7]   Highly Active and Durable Core-Corona Structured Bifunctional Catalyst for Rechargeable Metal-Air Battery Application [J].
Chen, Zhu ;
Yu, Aiping ;
Higgins, Drew ;
Li, Hui ;
Wang, Haijiang ;
Chen, Zhongwei .
NANO LETTERS, 2012, 12 (04) :1946-1952
[8]   Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts [J].
Cheng, Fangyi ;
Shen, Jian ;
Peng, Bo ;
Pan, Yuede ;
Tao, Zhanliang ;
Chen, Jun .
NATURE CHEMISTRY, 2011, 3 (01) :79-84
[9]   SOLUBILITY AND DIFFUSION COEFFICIENT OF OXYGEN IN POTASSIUM HYDROXIDE SOLUTIONS [J].
DAVIS, RE ;
HORVATH, GL ;
TOBIAS, CW .
ELECTROCHIMICA ACTA, 1967, 12 (03) :287-&
[10]   CuxCo3-xO4 used as bifunctional electrocatalyst II.: Electrochemical characterization for the oxygen reduction reaction [J].
De Koninck, Mathieu ;
Poirier, Simon-Claude ;
Marsan, Benoit .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (04) :A381-A388