Link Distance and Shortest Path Problems in the Plane

被引:0
作者
Cook, Atlas F. [1 ]
Wenk, Carola [1 ]
机构
[1] Univ Texas San Antonio, Dept Comp Sci, San Antonio, TX 78249 USA
来源
ALGORITHMIC ASPECTS IN INFORMATION AND MANAGEMENT, PROCEEDINGS | 2009年 / 5564卷
关键词
Voronoi Diagram; Shortest Path Map; Frechet Distance; Link Distance; ALGORITHMS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We develop algorithms to compute Voronoi diagrams, shortest path maps, and the Frechet distance in the plane with polygonal obstacles. Distances between points are measured either by link distance or by Euclidean shortest path distance.
引用
收藏
页码:140 / 151
页数:12
相关论文
共 17 条
  • [1] Agarwal PK, 2000, HANDBOOK OF COMPUTATIONAL GEOMETRY, P1, DOI 10.1016/B978-044482537-7/50002-4
  • [2] COMPUTING THE FRECHET DISTANCE BETWEEN 2 POLYGONAL CURVES
    ALT, H
    GODAU, M
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1995, 5 (1-2) : 75 - 91
  • [3] ARKIN EM, 1992, PROCEEDINGS OF THE THIRD ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P269
  • [4] Chiang YJ, 1999, PROCEEDINGS OF THE TENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P215
  • [5] COOK AF, 2008, 25 S THEOR ASP COMP
  • [6] COOK AF, 2008, CSTR2008011 U TEX SA
  • [7] Cook IV A.F., 2008, CSTR2008010 U TEX SA
  • [8] Dumitrescu A., 2004, COMP GEOM-THEOR APPL, P162
  • [9] Efrat A, 2000, PROCEEDINGS OF THE ELEVENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P927
  • [10] Gewali L., 1988, 4 S COMPUTATIONAL GE, P266