Fractional quantum integral operator with general kernels and applications

被引:0
作者
Babakhani, Azizollah [1 ]
Neamaty, Abdolali [2 ]
Yadollahzadeh, Milad [2 ]
Agahi, Hamzeh [1 ]
机构
[1] Babol Noshirvani Univ Technol, Fac Basic Sci, Dept Math, Shariati Ave, Babol Sar 4714871167, Iran
[2] Univ Mazandaran, Fac Math Sci, Dept Math, Babol Sar 4741695447, Iran
关键词
Fractional quantum integral; generalized fractional operator; comonotone functions; integral inequalities; covariance inequality; CALCULUS;
D O I
10.1142/S0219025717500035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first introduce the concept of fractional quantum integral with general kernels, which generalizes several types of fractional integrals known from the literature. Then we give more general versions of some integral inequalities for this operator, thus generalizing some previous results obtained by many researchers. 2,8,25,29,30,36
引用
收藏
页数:17
相关论文
共 37 条
  • [1] Pseudo-fractional integral inequality of Chebyshev type
    Agahi, Hamzeh
    Babakhani, Azizollah
    Mesiar, Radko
    [J]. INFORMATION SCIENCES, 2015, 301 : 161 - 168
  • [2] Certain Inequalities Involving Generalized Erdelyi-Kober Fractional q-Integral Operators
    Agarwal, Praveen
    Salahshour, Soheil
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    [J]. SCIENTIFIC WORLD JOURNAL, 2014,
  • [3] CERTAIN FRACTIONAL Q-INTEGRALS AND Q-DERIVATIVES
    AGARWAL, RP
    [J]. PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1969, 66 : 365 - &
  • [4] Generalized Variational Problems and Euler-Lagrange equations
    Agrawal, Om Prakash
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (05) : 1852 - 1864
  • [5] SOME INEQUALITIES OF HERMITE-HADAMARD TYPE FOR s-CONVEX FUNCTIONS
    Alomari, Mohammad W.
    Darus, Maslina
    Kirmaci, Ugur S.
    [J]. ACTA MATHEMATICA SCIENTIA, 2011, 31 (04) : 1643 - 1652
  • [6] SOME FRACTIONAL Q-INTEGRALS AND Q-DERIVATIVES
    ALSALAM, WA
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1966, 15 : 135 - &
  • [7] [Anonymous], 2006, THEORY APPL FRACTION
  • [8] [Anonymous], 1978, Kyushu University
  • [9] [Anonymous], 1994, GEN FRACTIONAL CALCU
  • [10] [Anonymous], 2000, Applications of Fractional Calculus in Physics