Kamenev-type and interval oscillation criteria for second-order linear differential equations on a measure chain

被引:31
作者
Del Medico, A [1 ]
Kong, QK [1 ]
机构
[1] No Illinois Univ, Dept Math Sci, De Kalb, IL 60115 USA
关键词
time scales; measure chains; oscillation; Kamenev criterion; interval criteria;
D O I
10.1016/j.jmaa.2004.02.040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish Kamenev-type criteria and interval criteria for oscillation of the second-order scalar differential equation (p(t)x(Delta)(t))(Delta)+q(t)x(sigma (t)) = 0 on a measure chain. Our results cover those for differential equations and provide new oscillation criteria for difference equations. Several examples are given to show the significance of the results. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:621 / 643
页数:23
相关论文
共 25 条
[1]  
Agarwal R. P., 1999, RESULTS MATH, V35, P3, DOI [DOI 10.1007/BF03322019, 10.1007/BF03322019]
[2]  
[Anonymous], DIFFER EQU DYN SYST
[3]  
[Anonymous], 2001, Canad. Appl. Math. Quart
[4]  
Bohner M., 2001, Dynamic Equations on Time Scales: AnIntroduction With Applications, DOI DOI 10.1007/978-1-4612-0201-1
[5]   OSCILLATION AND NONOSCILLATION FOR SYSTEMS OF SELF-ADJOINT 2ND-ORDER DIFFERENCE-EQUATIONS [J].
CHEN, S ;
ERBE, LH .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (04) :939-949
[6]   RICCATI TECHNIQUES AND DISCRETE OSCILLATIONS [J].
CHEN, SZ ;
ERBE, LH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1989, 142 (02) :468-487
[8]   Comparison theorems for linear dynamic equations on time scales [J].
Erbe, L ;
Peterson, A ;
Rehák, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 275 (01) :418-438
[9]   Averaging techniques for self-adjoint matrix equations on a measure chain [J].
Erbe, L ;
Peterson, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 271 (01) :31-58
[10]   Oscillation criteria for second-order matrix dynamic equations on a time scale [J].
Erbe, L ;
Peterson, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 141 (1-2) :169-185