Feedback stabilization of a class of evolution equations with delay

被引:79
作者
Benhassi, E. M. Ait [1 ]
Ammari, K. [2 ]
Boulite, S. [1 ]
Maniar, L. [1 ]
机构
[1] Univ Cadi Ayyad, Dept Math, Fac Sci Semlalia, Marrakech 40000, Morocco
[2] Univ Monastir, Fac Sci Monastir, Dept Math, Monastir 5019, Tunisia
关键词
Systems with delay; Feedback stabilization; Observability inequality; Exponential decay; Semigroup; WAVE-EQUATION; BOUNDARY STABILIZATION; TIME DELAYS; ENERGY DECAY; DOMAIN; DISSIPATION; STABILITY; ACTUATOR; RESPECT; SYSTEMS;
D O I
10.1007/s00028-009-0004-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we characterize the stabilization of some delay systems. The proof of the main result uses the method introduced in Ammari and Tucsnak (ESAIM COCV 6: 361-386, 2001) where the exponential stability for the closed loop problem is reduced to an observability estimate for the corresponding uncontrolled system combined with a boundedness property of the transfer function of the associated open loop system.
引用
收藏
页码:103 / 121
页数:19
相关论文
共 30 条
[1]   Decay rates of the plate equations [J].
Ammari, K ;
Khenissi, M .
MATHEMATISCHE NACHRICHTEN, 2005, 278 (14) :1647-1658
[2]  
Ammari K, 2002, ASYMPTOTIC ANAL, V30, P117
[3]   Decay rates for a beam with pointwise force and moment feedback [J].
Ammari, K ;
Liu, ZY ;
Tucsnak, M .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2002, 15 (03) :229-255
[4]  
Ammari K, 2001, ASYMPTOTIC ANAL, V28, P215
[5]   Stabilization of Bernoulli-Euler beams by means of a pointwise feedback force [J].
Ammari, K ;
Tucsnak, M .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 39 (04) :1160-1181
[6]   Stabilization of second order evolution equations by a class of unbounded feedbacks [J].
Ammari, K ;
Tucsnak, M .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2001, 6 (14) :361-386
[7]   SHARP SUFFICIENT CONDITIONS FOR THE OBSERVATION, CONTROL, AND STABILIZATION OF WAVES FROM THE BOUNDARY [J].
BARDOS, C ;
LEBEAU, G ;
RAUCH, J .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1992, 30 (05) :1024-1065
[8]  
Bardos C., 1991, Asymptotic Analysis, V4, P285
[9]  
Btkai A., 2000, THESIS TUBINGEN