Toward a neurospheroid niche model: optimizing embedded 3D bioprinting for fabrication of neurospheroid brain-like co-culture constructs

被引:49
作者
Li, Yi-Chen Ethan [1 ,2 ]
Jodat, Yasamin A. [1 ,3 ]
Samanipour, Roya [1 ,4 ]
Zorzi, Giulio [1 ]
Zhu, Kai [1 ,5 ]
Hirano, Minoru [1 ,6 ]
Chang, Karen [7 ]
Arnaout, Adnan [1 ]
Hassan, Shabir [1 ]
Matharu, Navneet [8 ,9 ]
Khademhosseini, Ali [1 ,10 ,11 ,12 ,13 ]
Hoorfar, Mina [4 ]
Shin, Su Ryon [1 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Dept Med, Div Engn Med, Boston, MA 02139 USA
[2] Feng Chia Univ, Dept Chem Engn, Taichung 40724, Taiwan
[3] Stevens Inst Technol, Dept Mech Engn, Hoboken, NJ 07030 USA
[4] Univ British Columbia, Sch Engn, Kelowna, BC V1V 1V7, Canada
[5] Fudan Univ, Zhongshan Hosp, Dept Cardiac Surg, Shanghai 200032, Peoples R China
[6] Toyota Motor North Amer Inc, Toyota Res Inst North Amer, Future Vehicle Res Dept, 1555 Woodridge Ave, Ann Arbor, MI 48105 USA
[7] Natl Taiwan Univ, Sch Dent, Grad Inst Clin Dent, Taipei, Taiwan
[8] Univ Calif San Francisco, Dept Bioengn & Therapeut Sci, San Francisco, CA 94158 USA
[9] Univ Calif San Francisco, Inst Human Genet, San Francisco, CA 94158 USA
[10] Univ Calif Los Angeles, Henry Samueli Sch Engn & Appl Sci, Dept Bioengn, Los Angeles, CA 90095 USA
[11] Univ Calif Los Angeles, Ctr Minimally Invas Therapeut C MIT, Los Angeles, CA 90095 USA
[12] Univ Calif Los Angeles, Henry Samueli Sch Engn & Appl Sci, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA
[13] Univ Calif Los Angeles, David Geffen Sch Med, Dept Radiol, Los Angeles, CA 90095 USA
基金
加拿大自然科学与工程研究理事会; 美国国家卫生研究院;
关键词
embedded bioprinting; neural stem cells; astrocytes; neurospheroids; thermal-healing hydrogels; brain tissues; NEURAL STEM-CELLS; NEURONAL MIGRATION; DIFFERENTIATION; ASTROCYTES; ORGANOIDS; HYDROGELS; BIOMATERIALS; NEUROGENESIS;
D O I
10.1088/1758-5090/abc1be
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A crucial step in creating reliable in vitro platforms for neural development and disorder studies is the reproduction of the multicellular three-dimensional (3D) brain microenvironment and the capturing of cell-cell interactions within the model. The power of self-organization of diverse cell types into brain spheroids could be harnessed to study mechanisms underlying brain development trajectory and diseases. A challenge of current 3D organoid and spheroid models grown in petri-dishes is the lack of control over cellular localization and diversity. To overcome this limitation, neural spheroids can be patterned into customizable 3D structures using microfabrication. We developed a 3D brain-like co-culture construct using embedded 3D bioprinting as a flexible solution for composing heterogenous neural populations with neurospheroids and glia. Specifically, neurospheroid-laden free-standing 3D structures were fabricated in an engineered astrocyte-laden support bath resembling a neural stem cell niche environment. A photo-crosslinkable bioink and a thermal-healing supporting bath were engineered to mimic the mechanical modulus of soft tissue while supporting the formation of self-organizing neurospheroids within elaborate 3D networks. Moreover, bioprinted neurospheroid-laden structures exhibited the capability to differentiate into neuronal cells. These brain-like co-cultures could provide a reproducible platform for modeling neurological diseases, neural regeneration, and drug development and repurposing.
引用
收藏
页数:17
相关论文
共 80 条
[1]   Neuronal migration in the murine rostral migratory stream requires serum response factor [J].
Alberti, S ;
Krause, SM ;
Kretz, O ;
Philippar, U ;
Lemberger, T ;
Casanova, E ;
Wiebel, FF ;
Schwarz, H ;
Frotscher, M ;
Schütz, G ;
Nordheim, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (17) :6148-6153
[2]  
Aregueta-Robles UA, 2015, IEEE ENG MED BIO, P2600, DOI 10.1109/EMBC.2015.7318924
[3]   A novel approach to the human connectome: Ultra-high resolution mapping of fiber tracts in the brain [J].
Axer, Markus ;
Amunts, Katrin ;
Graessel, David ;
Palm, Christoph ;
Dammers, Juergen ;
Axer, Hubertus ;
Pietrzyk, Uwe ;
Zilles, Karl .
NEUROIMAGE, 2011, 54 (02) :1091-1101
[4]   Interactions between nodes in a physical gel network of telechelic polymers; self-consistent field calculations beyond the cell model [J].
Bergsma, J. ;
Leermakers, F. A. M. ;
van der Gucht, J. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (14) :9001-9014
[5]   Writing in the granular gel medium [J].
Bhattacharjee, Tapomoy ;
Zehnder, Steven M. ;
Rowe, Kyle G. ;
Jain, Suhani ;
Nixon, Ryan M. ;
Sawyer, W. Gregory ;
Angelini, Thomas E. .
SCIENCE ADVANCES, 2015, 1 (08)
[6]   Adult Mammalian Neural Stem Cells and Neurogenesis: Five Decades Later [J].
Bond, Allison M. ;
Ming, Guo-li ;
Song, Hongjun .
CELL STEM CELL, 2015, 17 (04) :385-395
[7]   3D Printed Conductive Nanocellulose Scaffolds for the Differentiation of Human Neuroblastoma Cells [J].
Bordoni, Matteo ;
Karabulut, Erdem ;
Kuzmenko, Volodymyr ;
Fantini, Valentina ;
Pansarasa, Orietta ;
Cereda, Cristina ;
Gatenholm, Paul .
CELLS, 2020, 9 (03)
[8]   Neural differentiation of pluripotent cells in 3D alginate-based cultures [J].
Bozza, Angela ;
Coates, Emily E. ;
Incitti, Tania ;
Ferlin, Kimberly M. ;
Messina, Andrea ;
Menna, Elisabetta ;
Bozzi, Yuri ;
Fisher, John P. ;
Casarosa, Simona .
BIOMATERIALS, 2014, 35 (16) :4636-4645
[9]   Studying the Brain in a Dish: 3D Cell Culture Models of Human Brain Development and Disease [J].
Brown, Juliana ;
Quadrato, Giorgia ;
Arlotta, Paola .
HUMAN EMBRYONIC STEM CELLS IN DEVELOPMENT, 2018, 129 :99-122
[10]   Engineering of human brain organoids with a functional vascular-like system [J].
Cakir, Bilal ;
Xiang, Yangfei ;
Tanaka, Yoshiaki ;
Kural, Mehmet H. ;
Parent, Maxime ;
Kang, Young-Jin ;
Chapeton, Kayley ;
Patterson, Benjamin ;
Yuan, Yifan ;
He, Chang-Shun ;
Raredon, Micha Sam B. ;
Dengelegi, Jake ;
Kim, Kun-Yong ;
Sun, Pingnan ;
Zhong, Mei ;
Lee, Sangho ;
Patra, Prabir ;
Hyder, Fahmeed ;
Niklason, Laura E. ;
Lee, Sang-Hun ;
Yoon, Young-Sup ;
Park, In-Hyun .
NATURE METHODS, 2019, 16 (11) :1169-+