LP-Continuity for pseudo-differential operators

被引:0
|
作者
Garello, Gianluca [1 ]
Morando, Alessandro [1 ]
机构
[1] Univ Turin, Dipartmento Matemat, I-10123 Turin, Italy
来源
PSEUDO-DIFFERENTIAL OPERATORS AND RELATED TOPICS | 2006年 / 164卷
关键词
pseudo-differential operators; L-P spaces;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The authors give a short survey about the LP-continuity of pseudo-differential operators both with smooth and non-smooth symbols.
引用
收藏
页码:79 / +
页数:4
相关论文
共 50 条
  • [31] PSEUDO-DIFFERENTIAL OPERATORS FOR WEYL TRANSFORMS
    Duan, Xiaoxi
    Wong, M. W.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2013, 75 (04): : 3 - 12
  • [32] Pseudo-differential operators with point interactions
    Albeverio, S
    Kurasov, P
    LETTERS IN MATHEMATICAL PHYSICS, 1997, 41 (01) : 79 - 92
  • [33] Lp α(Rn+1+)- boundedness of pseudo-differential operators involving the Weinstein transform
    Sartaj, Mohd
    Upadhyay, S. K.
    FILOMAT, 2024, 38 (03) : 957 - 978
  • [34] Continuity in quasi-homogeneous Sobolev spaces for pseudo-differential operators with Besov symbols
    Garello, Gianluca
    Morando, Alessandro
    MODERN TRENDS IN PSEUDO-DIFFERENTIAL OPERATORS, 2007, 172 : 161 - +
  • [35] The Bilinear Pseudo-differential Operators of S0,0-type on Lp x Lq
    Huang, Liang
    RESULTS IN MATHEMATICS, 2023, 78 (05)
  • [36] Pseudo-Differential Operators with Symbols in Modulation Spaces
    Toft, Joachim
    PSEUDO-DIFFERENTIAL OPERATORS: COMPLEX ANALYSIS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 205 : 223 - 234
  • [37] Pseudo-differential operators in the generalized weinstein setting
    Ben Mohamed, Hassen
    Bettaibi, Youssef
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (07) : 3345 - 3361
  • [38] Pseudo-differential operators with nonlinear quantizing functions
    Esposito, Massimiliano
    Ruzhansky, Michael
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (01) : 103 - 130
  • [39] Pseudo-Differential Operators on S1
    Molahajloo, Shahla
    Wong, M. W.
    NEW DEVELOPMENTS IN PSEUDO-DIFFERENTIAL OPERATORS, 2009, 189 : 297 - 306
  • [40] General formulae for two pseudo-differential operators
    Zhang Da-Jun
    Wu Hua
    Deng Shu-Fang
    Bi Jin-Bo
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 49 (06) : 1393 - 1396