Blow-Up Phenomena for a Class of Generalized Double Dispersion Equations

被引:5
作者
Di, Huafei [1 ,2 ]
Shang, Yadong [1 ,2 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R China
[2] Guangzhou Univ, Guangdong Higher Educ Inst, Key Lab Math & Interdisciplinary Sci, Guangzhou 510006, Guangdong, Peoples R China
关键词
double dispersion; blow up; upper bound; lower bound; 35L35; 31A35; 35B44; NONLINEAR-WAVE EQUATIONS; BOUNDARY VALUE-PROBLEMS; ASYMPTOTIC-BEHAVIOR; CAUCHY-PROBLEM; GLOBAL EXISTENCE;
D O I
10.1007/s10473-019-0219-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we study the blow-up phenomena of generalized double dispersion equations u(tt) - u(xx) - u(xxt) + u(xxxx) - u(xxtt) = f(u(x))(x). Under suitable conditions on the initial data, we first establish a blow-up result for the solutions with arbitrary high initial energy, and give some upper bounds for blow-up time T* depending on sign and size of initial energy E(0). Furthermore, a lower bound for blow-up time T* is determined by means of a differential inequality argument when blow-up occurs.
引用
收藏
页码:567 / 579
页数:13
相关论文
共 26 条