How Structure Defines Affinity in Protein-Protein Interactions

被引:77
作者
Erijman, Ariel [1 ]
Rosenthal, Eran [1 ]
Shifman, Julia M. [1 ]
机构
[1] Hebrew Univ Jerusalem, Alexander Silberman Inst Life Sci, Dept Biol Chem, IL-91904 Jerusalem, Israel
来源
PLOS ONE | 2014年 / 9卷 / 10期
基金
以色列科学基金会;
关键词
BINDING-AFFINITY; FREE-ENERGY; SALT BRIDGES; FORCE-FIELD; MEAN FORCE; PREDICTION; RECOGNITION; PRINCIPLES; ASSOCIATION; MUTATIONS;
D O I
10.1371/journal.pone.0110085
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Protein-protein interactions (PPI) in nature are conveyed by a multitude of binding modes involving various surfaces, secondary structure elements and intermolecular interactions. This diversity results in PPI binding affinities that span more than nine orders of magnitude. Several early studies attempted to correlate PPI binding affinities to various structure-derived features with limited success. The growing number of high-resolution structures, the appearance of more precise methods for measuring binding affinities and the development of new computational algorithms enable more thorough investigations in this direction. Here, we use a large dataset of PPI structures with the documented binding affinities to calculate a number of structure-based features that could potentially define binding energetics. We explore how well each calculated biophysical feature alone correlates with binding affinity and determine the features that could be used to distinguish between high-, medium- and low- affinity PPIs. Furthermore, we test how various combinations of features could be applied to predict binding affinity and observe a slow improvement in correlation as more features are incorporated into the equation. In addition, we observe a considerable improvement in predictions if we exclude from our analysis low-resolution and NMR structures, revealing the importance of capturing exact intermolecular interactions in our calculations. Our analysis should facilitate prediction of new interactions on the genome scale, better characterization of signaling networks and design of novel binding partners for various target proteins.
引用
收藏
页数:10
相关论文
共 66 条
[1]  
[Anonymous], 1894, BER DTSCH CHEM GES, DOI DOI 10.1002/CBER.18940270364
[2]   A novel empirical free energy function that explains and predicts protein-protein binding affinities [J].
Audie, Joseph ;
Scarlata, Suzanne .
BIOPHYSICAL CHEMISTRY, 2007, 129 (2-3) :198-211
[3]   A dissection of specific and non-specific protein - Protein interfaces [J].
Bahadur, RP ;
Chakrabarti, P ;
Rodier, F ;
Janin, J .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 336 (04) :943-955
[4]   ION-PAIRS IN PROTEINS [J].
BARLOW, DJ ;
THORNTON, JM .
JOURNAL OF MOLECULAR BIOLOGY, 1983, 168 (04) :867-885
[5]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[6]   Proteinprotein interactions: General trends in the relationship between binding affinity and interfacial buried surface area [J].
Chen, Jieming ;
Sawyer, Nicholas ;
Regan, Lynne .
PROTEIN SCIENCE, 2013, 22 (04) :510-515
[7]   PRINCIPLES OF PROTEIN-PROTEIN RECOGNITION [J].
CHOTHIA, C ;
JANIN, J .
NATURE, 1975, 256 (5520) :705-708
[8]  
CONNOLLY ML, 1986, INT J PEPT PROT RES, V28, P360
[9]   A 2ND GENERATION FORCE-FIELD FOR THE SIMULATION OF PROTEINS, NUCLEIC-ACIDS, AND ORGANIC-MOLECULES [J].
CORNELL, WD ;
CIEPLAK, P ;
BAYLY, CI ;
GOULD, IR ;
MERZ, KM ;
FERGUSON, DM ;
SPELLMEYER, DC ;
FOX, T ;
CALDWELL, JW ;
KOLLMAN, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (19) :5179-5197
[10]   HIGH-RESOLUTION EPITOPE MAPPING OF HGH-RECEPTOR INTERACTIONS BY ALANINE-SCANNING MUTAGENESIS [J].
CUNNINGHAM, BC ;
WELLS, JA .
SCIENCE, 1989, 244 (4908) :1081-1085