Blow-up solutions for mixed nonlinear Schrodinger equations

被引:10
作者
Tan, SB [1 ]
机构
[1] Xiamen Univ, Dept Math, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
existence; nonexistence; blow-tip; nonlinear Schrodinger equation;
D O I
10.1007/s10114-003-0295-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the initial boundary-value problem for the following nonlinear evolution equation: phi(t) = ialphaphi(xx) +betaphi(2)(phi) over bar (x) + gamma\phi\(2)phi(x) + ig(\phi\(2))phi. Under certain conditions on the initial data. and the function g(s), we study the existence and nonexistence of global solution for this equation. The blow-tip solution and the blow-up time are also investigated.
引用
收藏
页码:115 / 124
页数:10
相关论文
共 23 条
[1]   THE CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR SCHRODINGER-EQUATION IN HS [J].
CAZENAVE, T ;
WEISSLER, FB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 14 (10) :807-836
[2]   THE INITIAL BOUNDARY-VALUE PROBLEM FOR A CLASS OF NONLINEAR SCHRODINGER-EQUATIONS [J].
CHEN, YM .
ACTA MATHEMATICA SCIENTIA, 1986, 6 (04) :405-418
[3]  
GINIBRE J, 1978, ANN I H POINCARE A, V28, P287
[4]   BLOWING UP OF SOLUTIONS TO CAUCHY-PROBLEM FOR NONLINEAR SCHRODINGER EQUATIONS [J].
GLASSEY, RT .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (09) :1794-1797
[5]  
GUO BL, 1991, P R SOC EDINBURGH A, V119, P34
[6]   MODIFIED WAVE-OPERATORS FOR THE DERIVATIVE NONLINEAR SCHRODINGER-EQUATION [J].
HAYASHI, N ;
OZAWA, T .
MATHEMATISCHE ANNALEN, 1994, 298 (03) :557-576
[7]  
Hayashi N, 1998, ANN I H POINCARE-PHY, V68, P159
[8]   THE INITIAL-VALUE PROBLEM FOR THE DERIVATIVE NONLINEAR SCHRODINGER-EQUATION IN THE ENERGY SPACE [J].
HAYASHI, N .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1993, 20 (07) :823-833
[9]   FINITE-ENERGY SOLUTIONS OF NONLINEAR SCHRODINGER-EQUATIONS OF DERIVATIVE TYPE [J].
HAYASHI, N ;
OZAWA, T .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1994, 25 (06) :1488-1503
[10]   Large time behavior of solutions for derivative cubic nonlinear Schrodinger equations [J].
Hayashi, N ;
Naumkin, PI ;
Uchida, H .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1999, 35 (03) :501-513