Shrinking Extragradient Method for Pseudomonotone Equilibrium Problems and Quasi-Nonexpansive Mappings

被引:1
|
作者
Khonchaliew, Manatchanok [1 ]
Farajzadeh, Ali [2 ]
Petrot, Narin [1 ,3 ]
机构
[1] Naresuan Univ, Dept Math, Fac Sci, Phitsanulok 65000, Thailand
[2] Razi Univ, Dept Math, Kermanshah 67149, Iran
[3] Naresuan Univ, Fac Sci, Ctr Excellence Nonlinear Anal & Optimizat, Phitsanulok 65000, Thailand
来源
SYMMETRY-BASEL | 2019年 / 11卷 / 04期
关键词
equilibrium problem; pseudomonotone bifunction; quasi-nonexpansive mapping; shrinking method; GENERALIZED HYBRID MAPPINGS; STRONG-CONVERGENCE THEOREMS; FIXED-POINT THEOREMS; NONLINEAR MAPPINGS; WEAK-CONVERGENCE; SCHEME; FAMILY;
D O I
10.3390/sym11040480
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper presents two shrinking extragradient algorithms that can both find the solution sets of equilibrium problems for pseudomonotone bifunctions and find the sets of fixed points of quasi-nonexpansive mappings in a real Hilbert space. Under some constraint qualifications of the scalar sequences, these two new algorithms show strong convergence. Some numerical experiments are presented to demonstrate the new algorithms. Finally, the two introduced algorithms are compared with a standard, well-known algorithm.
引用
收藏
页数:18
相关论文
共 50 条