General method for automated feature extraction and selection and its application for gender classification and biomechanical knowledge discovery of sex differences in spinal posture during stance and gait

被引:16
作者
Dindorf, Carlo [1 ]
Konradi, Jurgen [2 ]
Wolf, Claudia [2 ]
Taetz, Bertram [3 ]
Bleser, Gabriele [4 ]
Huthwelker, Janine [5 ]
Drees, Philipp [5 ]
Frohlich, Michael [1 ]
Betz, Ulrich [2 ]
机构
[1] Tech Univ Kaiserslautern, Dept Sports Sci, Kaiserslautern, Germany
[2] Johannes Gutenberg Univ Mainz, Univ Med Ctr, Inst Phys Therapy Prevent & Rehabil, Mainz, Germany
[3] German Res Ctr Artificial Intelligence, Dept Augmented Vis, Kaiserslautern, Germany
[4] Tech Univ Kaiserslautern, Jr Res Grp Wear HLTH, Kaiserslautern, Germany
[5] Johannes Gutenberg Univ Mainz, Univ Med Ctr, Dept Orthoped & Trauma Surg, Mainz, Germany
关键词
Ensemble feature selection; classification; surface topography; spine; motion; gender; KINEMATICS; BACK; WALKING; ALGORITHMS; MOVEMENT; PELVIS; THORAX; SPEED; LEVEL; PAIN;
D O I
10.1080/10255842.2020.1828375
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Modern technologies enable to capture multiple biomechanical parameters often resulting in relational data. The current work proposes a generally applicable method comprising automated feature extraction, ensemble feature selection and classification to best capture the potentials of the data also for generating new biomechanical knowledge. Its benefits are demonstrated in the concrete biomechanically and medically relevant use case of gender classification based on spinal data for stance and gait. Very good results for accuracy were obtained using gait data. Dynamic movements of the lumbar spine in sagittal and frontal plane and of the pelvis in frontal plane best map gender differences.
引用
收藏
页码:299 / 307
页数:9
相关论文
共 52 条
[11]   Ensembles for feature selection: A review and future trends [J].
Bolon-Canedo, Veronica ;
Alonso-Betanzos, Amparo .
INFORMATION FUSION, 2019, 52 :1-12
[12]   A review of feature selection methods on synthetic data [J].
Bolon-Canedo, Veronica ;
Sanchez-Marono, Noelia ;
Alonso-Betanzos, Amparo .
KNOWLEDGE AND INFORMATION SYSTEMS, 2013, 34 (03) :483-519
[13]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[14]   Sex differences in whole body gait kinematics at preferred speeds [J].
Bruening, Dustin A. ;
Frimenko, Rebecca E. ;
Goodyear, Chuck D. ;
Bowden, David R. ;
Fullenkamp, Adam M. .
GAIT & POSTURE, 2015, 41 (02) :540-545
[15]   POINTS OF SIGNIFICANCE Statistics versus machine learning [J].
Bzdok, Danilo ;
Altman, Naomi ;
Krzywinski, Martin .
NATURE METHODS, 2018, 15 (04) :232-233
[16]   A survey on feature selection methods [J].
Chandrashekar, Girish ;
Sahin, Ferat .
COMPUTERS & ELECTRICAL ENGINEERING, 2014, 40 (01) :16-28
[17]   SMOTE: Synthetic minority over-sampling technique [J].
Chawla, Nitesh V. ;
Bowyer, Kevin W. ;
Hall, Lawrence O. ;
Kegelmeyer, W. Philip .
2002, American Association for Artificial Intelligence (16)
[18]   Gender differences in three dimensional gait analysis data from 98 healthy Korean adults [J].
Cho, SH ;
Park, JM ;
Kwon, OY .
CLINICAL BIOMECHANICS, 2004, 19 (02) :145-152
[19]  
Chockalingam N, 2002, STUD HEALTH TECHNOL, V88, P105
[20]   Gender differences in walking and running on level and inclined surfaces [J].
Chumanov, Elizabeth S. ;
Wall-Schefer, Cara ;
Heiderscheit, Bryan C. .
CLINICAL BIOMECHANICS, 2008, 23 (10) :1260-1268