Empirical Measures and Quantum Mechanics: Applications to the Mean-Field Limit

被引:15
|
作者
Golse, Francois [1 ]
Paul, Thierry [1 ,2 ]
机构
[1] Ecole Polytech, CMLS, F-91128 Palaiseau, France
[2] CNRS, F-91128 Palaiseau, France
关键词
SCHRODINGER-EQUATION; SCATTERING THEORY; VLASOV EQUATIONS; CLASSICAL-LIMIT; DYNAMICS; APPROXIMATION; PROPAGATION; DERIVATION;
D O I
10.1007/s00220-019-03357-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we define a quantum analogue of the notion of empirical measure in the classical mechanics of N-particle systems. We establish an equation governing the evolution of our quantum analogue of the N-particle empirical measure, and we prove that this equation contains the Hartree equation as a special case. Applications to the mean-field limit of the N-particle Schrodinger equation include an convergence rate in some appropriate dual Sobolev norm for the Wigner transform of the single-particle marginal of the N-particle density operator, uniform in provided that V and have integrable Fourier transforms.
引用
收藏
页码:1021 / 1053
页数:33
相关论文
共 50 条
  • [31] PERIODIC BEHAVIOR OF THE STOCHASTIC BRUSSELATOR IN THE MEAN-FIELD LIMIT
    SCHEUTZOW, M
    PROBABILITY THEORY AND RELATED FIELDS, 1986, 72 (03) : 425 - 462
  • [32] Rigorous mean-field limit and cross-diffusion
    Li Chen
    Esther S. Daus
    Ansgar Jüngel
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [33] A Note on the Binding Energy for Bosons in the Mean-Field Limit
    Lea Boßmann
    Nikolai Leopold
    David Mitrouskas
    Sören Petrat
    Journal of Statistical Physics, 191
  • [34] A MEAN-FIELD LIMIT FOR A CLASS OF QUEUING-NETWORKS
    BACCELLI, F
    KARPELEVICH, FI
    KELBERT, MY
    PUHALSKII, AA
    RYBKO, AN
    SUHOV, YM
    JOURNAL OF STATISTICAL PHYSICS, 1992, 66 (3-4) : 803 - 825
  • [35] Limit Theorems for the Cubic Mean-Field Ising Model
    Contucci, Pierluigi
    Mingione, Emanuele
    Osabutey, Godwin
    ANNALES HENRI POINCARE, 2024, 25 (11): : 5019 - 5044
  • [36] On the mean-field limit for the consensus-based optimization
    Huang, Hui
    Qiu, Jinniao
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (12) : 7814 - 7831
  • [37] A note on the mean-field limit for the particle swarm optimization
    Huang, Hui
    APPLIED MATHEMATICS LETTERS, 2021, 117
  • [38] Rigorous mean-field limit and cross-diffusion
    Chen, Li
    Daus, Esther S.
    Juengel, Ansgar
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (04):
  • [39] MEAN-FIELD LIMIT FOR PARTICLE SYSTEMS WITH TOPOLOGICAL INTERACTIONS
    Benedetto, Dario
    Caglioti, Emanuele
    Rossi, Stefano
    MATHEMATICS AND MECHANICS OF COMPLEX SYSTEMS, 2021, 9 (04) : 423 - 440
  • [40] Mean-field limit of non-exchangeable systems
    Jabin, Pierre-Emmanuel
    Poyato, David
    Soler, Juan
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2025, 78 (04) : 651 - 741