Minimal unit vector fields

被引:33
|
作者
Gil-Medrano, O [1 ]
Llinares-Fuster, E [1 ]
机构
[1] Univ Valencia, Fac Matemat, Dept Geometria & Topol, Burjassot 46100, Valencia, Spain
关键词
volume of vector fields; critical points; minimal vector fields; Killing vector fields; Hopf vector fields; Sasakian manifolds;
D O I
10.2748/tmj/1113247180
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We compute the first variation of the functional that assigns each unit vector field the volume of its image in the unit tangent bundle. It is shown that critical points are exactly those vector fields that determine a minimal immersion. We also find a necessary and sufficient condition that a vector field, defined in an open manifold, must fulfill to be minimal, and obtain a simpler equivalent condition when the vector field is Killing. The condition is fulfilled, in particular, by the characteristic vector field of a Sasakian manifold and by Hopf vector fields on spheres.
引用
收藏
页码:71 / 84
页数:14
相关论文
共 50 条
  • [1] Examples of minimal unit vector fields
    González-Dávila, JC
    Vanhecke, L
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2000, 18 (3-4) : 385 - 404
  • [2] Examples of Minimal Unit Vector Fields
    J. C. González-Dávila
    L. Vanhecke
    Annals of Global Analysis and Geometry, 2000, 18 : 385 - 404
  • [3] NOTES ON MINIMAL UNIT KILLING VECTOR FIELDS
    Chun, Sun Hyang
    Park, JeongHyeong
    Sekigawa, Kouei
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (05) : 1339 - 1350
  • [4] Invariant minimal unit vector fields on Lie groups
    Tsukada K.
    Vanhecke L.
    Periodica Mathematica Hungarica, 2000, 40 (2) : 123 - 133
  • [5] Harmonic and minimal unit vector fields on Riemannian symmetric spaces
    Berndt, J
    Vanhecke, L
    Verhóczki, L
    ILLINOIS JOURNAL OF MATHEMATICS, 2003, 47 (04) : 1273 - 1286
  • [6] Minimal unit vector fields with respect to Riemannian natural metrics
    Perrone, Domenico
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2013, 31 (06) : 820 - 835
  • [7] Harmonic and minimal vector fields on tangent and unit tangent bundles
    Boeckx, E
    Vanhecke, L
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2000, 13 (01) : 77 - 93
  • [8] Harmonic and minimal invariant unit vector fields on homogeneous Riemannian manifolds
    Gil-Medrano, O
    González-Dávila, JC
    Vanhecke, L
    HOUSTON JOURNAL OF MATHEMATICS, 2001, 27 (02): : 377 - 409
  • [9] On the Biharmonicity of Vector Fields and Unit Vector Fields
    Abbassi, Mohamed Tahar Kadaoui
    Doua, Souhail
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (03)
  • [10] On the Biharmonicity of Vector Fields and Unit Vector Fields
    Mohamed Tahar Kadaoui Abbassi
    Souhail Doua
    The Journal of Geometric Analysis, 2022, 32